
38 The Delphi Magazine Issue 105

A Portable XML
by Primoz Gabrijelcic

For every programmer there
comes a time to write code to

read an XML document. At least it
seems so, in this day and age. The
first problem the programmer
must solve is which of the many
XML libraries should be used.

Like many others, I went through
that process and found a tool that
suits me fine, called OmniXML. It is
written in Delphi and comes with
complete source. It is also reason-
ably open-source (parts are
released under the Mozilla Public
License and parts are pure
freeware) and as such is ready for
inclusion into large projects. You
can download it from www.
omnixml.com (you will need to do
this to follow my examples here).

The core unit, OmniXML.pas,
which contains the XML represen-
tation interfaces, parser and
writer, was written by a single pro-
grammer, Miha Remec (he is also
the guy behind the www.omnixml.
com website). He started writing it
in 2000, because he was missing a
native Delphi DOM parser, one that
would represent the DOM the same
way as it was designed. The best
Delphi parser around at that time
was OpenXML, but it used classes
to represent XML elements, not
interfaces. OmniXML uses inter-
faces, derived from the IXMLNode
(as specified by the DOM). That

also makes it almost completely
compatible with the MSXML
parser, which uses the same
approach.

From the start OmniXML was
developed using the ‘write what
you need’ approach and it shows.
There are still some placeholder
methods which contain only a
comment Not Yet Implemented.
There are only a few such methods,
however, and they don’t include
any important parts of the DOM
standard.

The Parser
The most important part of any
XML library is undoubtedly a
parser. Managing interfaces in
memory is pretty trivial, writing a
document back to persistent stor-
age is simple, but parsing existing
data and breaking it into an inter-
nal representation can be really
challenging.

OmniXML can read an XML doc-
ument from three different
sources: a file, wide string, or a
TStream. Only when processing a
TStream does OmniXML have any
hard work: the first two sources
are simply wrapped into a stream
and passed to the stream parser.

The parser expects all incoming
data to be in the Unicode 16-bit
format (UTF-16). In real life that will
not always be the case. To convert
the input into a UTF-16 form, the
parser reads the data through the
IUnicodeStream interface. All parts

of the parser use this interface for
reading, they never access the
stream itself.

The IUnicodeStream implementa-
tion differs according to the oper-
ating system. On Windows, the
TGpTextStream class converts vari-
ous codepages and UTF-8 into
WideChars. As it uses the Windows
API for codepage processing, it
cannot be directly used on Linux.
The plan is to use libiconv on
Linux, but currently the Linux ver-
sion only supports UTF-16 input,
read by the TUnicodeStream, which
is a wrapper around TMemoryStream.

The parser is distributed
between the DOM elements. Each
element implements a method
ReadFromStream which contains an
internal state engine. ReadFrom-
Stream reads the data WideChar by
WideChar and constructs an inter-
nal representation of the XML doc-
ument. As soon as it detects that
another element should be cre-
ated, it creates a representing
interface, pushes the current Wide-
Char back to the reader (so it will
be read again by the new element),
and calls the newly created inter-
face’s ReadFromStream. In more
technical terms, the parser is an
LR(1) parser with a state engine
distributed across several layers.

Input processing always starts
from the top element, IXMLDocument
(representing the entire XML doc-
ument). IXMLDocument’s part of the
parser reads a few characters to
find out what it is reading, then
it creates another interface
(typically IXMLElement) and calls its
ReadFromStream method. IXML-
Element will read a few characters,
and… well, you get the point.

procedure TXMLText.ReadFromStream(const Parent: TXMLNode;
const InputStream: IUnicodeStream);

type
TParserState = (psText);

var
ReadChar: WideChar;
PState: TParserState;

begin
// [43] content ::= CharData? ((element | Reference |
// CDSect | PI | Comment) CharData?)* /* */
// [14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)
PState := psText;
// read next available character
while InputStream.ProcessChar(ReadChar) do begin
case PState of
psText:
case ReadChar of
'<':
begin
InputStream.UndoRead;
// 2002-12-20 (mr): speed optimization
// add #text node only when some text exists

if InputStream.OutputBufferLen > 0 then begin
if not FOwnerDocument.PreserveWhiteSpace
then
NodeValue := ShrinkWhitespace(NodeValue +
InputStream.GetOutputBuffer)

else
NodeValue := NodeValue +
InputStream.GetOutputBuffer;

if NodeValue = '' then
Parent.RemoveChild(Self);

end else
Parent.RemoveChild(Self);

Exit;
end;

'&': InputStream.WriteOutputChar(
Reference2Char(InputStream));

else
InputStream.WriteOutputChar(ReadChar);

end;
end;

end;
end;

➤ Listing 1:
Parsing IXMLText node.

May 2004 The Delphi Magazine 39

In the search for a reasonably-
sized example, I selected IXMLText.
ReadFromStream (IXMLText being the
interface concerned with text
nodes, ie the actual data stored
between opening and closing XML
tags). As you can see in Listing 1, its
ReadFromStream method will read
characters from the stream in a
while loop. Most of the time, it will
just store the character that was
just read for later use (the elsepart
of the case statement). There are
only two cases that deserve a spe-
cial processing: the & character
(introducing a reference, for exam-
ple <) and a <, which signals
either the start of a subnode or the
end of the current node. In both
cases, ReadFromStream stores the
text it has just read into the
NodeValue property, pushes the <
back into the input stream (so it
can be read by some other Read-
FromStream) and exits.

RSS Reader
To show OmniXML in action I
decided to code a small RSS reader
(stored as the project RSSReader
in this month’s download). It is
only a small project that doesn’t do
much: it iterates through the chan-
nels in the RSS file and reads the
title for each channel. Further-
more, the code only supports the
old RSS 0.9 specification. (For
details on the RSS format see the

excellent article by Bob Swart,
published in Issue 99.)

The structure of the RSS file can
get quite complicated, but that is
not our concern today. To under-
stand the sample code you can pre-
tend that the RSS document in
question is quite simple, like the
example in Figure 1 (borrowed
from www.deadly.org).

An RSS document contains one
or more channels, stored under
the node channel. Each channel has
a name (node title) and zero or
more active items (node item),
each having its own title.

To read this information, the
code (see Listing 2) first creates a
top level XML interface, IXMLDoc-
ument, by calling the CreateXMLDoc
helper function. Then it loads the
RSS file into that interface (that is
the moment when all the Read-
FromStreamprocedures are called).

Next we have to iterate over all
the channel nodes under the top
level rss node. The right way to do
this is to call the SelectNodes
method on the interface represent-
ing the rss node. To get that inter-
face, we merely access xml.Docu-
mentElement, which will return the
first node in the document (ie, the
rss node).

The result of the SelectNodes
method is the IXMLNodeList inter-
face, an interface that can manage
a list of nodes. Besides some other
methods, it offers us a way to
access (Item) and count (Length)

stored nodes. We now merely have
to loop over the resulting IXML-
NodeListwith a simple for loop and
access each channel in turn.

The channel title is stored imme-
diately under the channel node. To
get the title node, we can use
SelectSingleNode, which is a sim-
pler cousin to SelectNodes that
returns only one node, or nil if the
node doesn’t exist.

To get the value of the title
node you have to call the Text func-
tion. The result is, of course, a
Unicode string, but in this example
I simply allowed Delphi to convert
it back to an 8-bit string.

Now that we have the title, we
simply repeat the SelectNodes
approach and iterate over all the
items in the channel. Of course, an
item could be title-less, although
such entry in the RSS feed wouldn’t
make much sense, and we should
cater for that possibility.

Creating Documents
From Scratch
Creating an XML document is a
simple but boring process. The
demo program RSSWriter (see
Listing 3) shows how to create a
simple RSS document with one
channel and two items in it. As you
can see, the mantra is ‘create an
element, sets its text, then insert it
at the right place’. At the end we
can simply access the XMLproperty
of the IXMLDocument, which will
return complete document, con-
verted into a wide string.

The IXMLDocument interface also
declares two functions to save a
document into a file or a stream.
Both are capable of applying some
basic formatting to the output (ie

<?xml version="1.0"?>
<rss version="0.91">
<channel>
<title>OpenBSD Journal</title>
<item><title>Slovenian user's list</title></item>
<item><title>gcc 3.3.2 imported into CURRENT</title></item>
<item><title>Status on USB 2.0?</title></item>
<item><title>OWASP Top Ten for PHP</title></item>
<item><title>OpenBSD under Bochs?</title></item>

</channel>
</rss>

➤ Figure 1: Trivial RSS document.

procedure TForm1.LoadItems(const rssFileName: string);
var
channel : IXMLNode;
channels: IXMLNodeList;
iChannel: integer;
iItem : integer;
items : IXMLNodeList;
title : IXMLNode;
xml : IXMLDocument;

begin
xml := CreateXMLDoc;
if not xml.Load(rssFileName) then
ListBox1.Items.Add('Not an XML document: '+rssFileName)

else begin
channels := xml.DocumentElement.SelectNodes('channel');
for iChannel := 0 to channels.Length-1 do begin
channel := channels.Item[iChannel];

title := channel.SelectSingleNode('title');
if assigned(title) then
ListBox1.Items.Add('['+title.Text+']')

else
ListBox1.Items.Add('[]');

items := channel.SelectNodes('item');
for iItem := 0 to items.Length-1 do begin
title := items.Item[iItem].SelectSingleNode(
'title');

if assigned(title) then
ListBox1.Items.Add(' <'+title.Text+'>')

else
ListBox1.Items.Add(' <>');

end; //for iItem
end; //for iChannel

end;
end; { TForm1.LoadItems }

➤ Listing 1:
Parsing IXMLText node.

40 The Delphi Magazine Issue 105

saving the document with each
node starting in a new line, either
indented or left-aligned).

The process of manually creat-
ing an XML document can be
simplified with some wrapper
methods. Don’t bother writing
them, though: OmniXML contains
three units to help you. Which
brings us nicely to the…

OmniXMLUtils
The most basic of the accompany-
ing libraries (and the most impor-
tant, at least in my view) is a
collection of various helper proce-
dures and functions. You could
expect to find many of those func-
tions in the base OmniXML classes,
but you won’t, because Miha
wanted to keep IXMLDocument (and
the other interfaces) DOM-compat-
ible and not cluttered with various
additions and extensions. That’s
why all such helpers have found
their place in OmniXMLUtils.

There are far too many proce-
dures in this unit to name them all.
They can be divided into three
large groups, based on the level
they are acting upon: document,
node, or node data.

The first group is the smallest.
The most important members are
the functions to load an XML docu-
ment from a string, wide string,
stream, registry, resource or file
(all with names starting with
XMLLoadFrom...) and to save it to a
string, wide string, stream, regis-
try, or file (XMLSaveTo...). These
functions take care of hiding small
differences between OmniXML and
MSXML. There is also a function
that will return a simple XML docu-
ment with nodes already inserted
(ConstructXMLDocument) and a func-
tion called CloneDocument that can
copy one document to another,

optionally filtering out some nodes
during the operation.

A bigger group of functions can
be used to access and manipulate
nodes. There are functions to find
nodes based on the node name or
content, to select, copy, move,
rename and delete nodes. An inter-
esting function in this group is
EnsureNode, which will make sure
that a subnode with the specified
name exists. It is a nice replace-
ment for the CreateElement/Append-
Child two-liner from Listing 3.

The largest family of functions
allow the programmer to access
non-string data in a standardised
way. There are functions to con-
vert between wide strings and all
other important types, from
booleans to TDateTime (XMLStrTo...
and XML...ToStr), helpers to set
nodes values to such values
(GetNodeText... and SetNode-
Text...), plus many more.

To help you fully appreciate the
power of OmniXMLUtils I have
rewritten the RSS creation example
to use the functions from this unit.
The resulting code (in the project

RSSWriter-Utils) is less than half
the size of the original and is
shown in Listing 4.

As you can see, the code is both
shorter and easier to understand.
Both the rss and channel nodes are
created in one line using the
EnsureNode function. Then the
title node is created and filled in
with a simple call to SetNodeText. In
a similar manner, titles for two
items are created and set. Two
items are created on the fly with a
call to AppendNode, because the
EnsureNode only allows for one
subnode with the specified name.
At the end, XMLSaveToString is used
to save XML document in a pretty,
indented way.

XML Mapper
There is of course no need to
always work with XML documents
explicitly. It is always a good idea
to write a wrapper class: a class
that exposes the required proper-
ties and methods on the public
side and manipulates the XML doc-
ument internally. When you have
such a class you can, for example,
create an RSS document in a
manner similar to the code in
Listing 5.

To simplify the creation of such
an intermediate class (or better,
a whole class hierarchy, because
you will typically want to create
one class for one type of XML
node), OmniXML includes a

procedure TForm1.CreateSampleRSS;
var
channel: IXMLNode;
item : IXMLNode;
rss : IXMLNode;
title : IXMLNode;
xml : IXMLDocument;

begin
xml := CreateXMLDoc;
rss := xml.CreateElement('rss');
xml.AppendChild(rss);
channel := xml.CreateElement('channel');
rss.AppendChild(channel);
title := xml.CreateElement('title');
title.Text := 'Test title 1';
channel.AppendChild(title);
item := xml.CreateElement('item');
channel.AppendChild(item);
title := xml.CreateElement('title');
title.Text := 'Item 1';
item.AppendChild(title);
item := xml.CreateElement('item');
channel.AppendChild(item);
title := xml.CreateElement('title');
title.Text := 'Item 2';
item.AppendChild(title);
//...
Memo1.Lines.Text := xml.XML;

end; { TForm1.CreateSampleRSS }

➤ Listing 3: Creating a simple
RSS document.

procedure TForm1.CreateSampleRSS;
var
channel: IXMLNode;
title : IXMLNode;
xml : IXMLDocument;

begin
xml := CreateXMLDoc;
channel := EnsureNode(EnsureNode(xml, 'rss'), 'channel');
SetNodeText(channel, 'title', 'TestTitle 1');
SetNodeText(AppendNode(channel, 'item'), 'title', 'Item 1');
SetNodeText(AppendNode(channel, 'item'), 'title', 'Item 2');
//...
Memo1.Lines.Text := XMLSaveToString(xml, ofIndent);

end; { TForm1.CreateSampleRSS }

➤ Listing 4: RSS generation using OmniXMLUtils.

May 2004 The Delphi Magazine 41

framework for writing such map-
pers in the OmniXMLProperties unit.

For example, minimal code to
support a collection of item nodes,
each of which can have title, link
and description subnodes, is
shown in Listing 6. As you can see,
I only had to write two construc-
tors. The whole magic is hidden
inside the property accessors,
GetXMLProp... and SetXMLProp...
(as in OmniXMLUtils there is a whole
bunch of these functions, with
names that reflect the type of
parameters they work upon). Each
accessor stores the property data
directly in the node of the XML doc-
ument and uses the XMLStrTo.../
XML...ToStr functions from
OmniXMLUtils to convert node text
to the proper format. The index
part of the property declaration
specifies the index into the array
initialized in the class constructor
where the node names and default
values are set.

Because the resulting classes
can be ‘stringified’ (courtesy of
XML), they can easily be stored
to disk or sent over the internet as
you wish. Because of that, this
approach to class creation can also
be used when you want to convert
a bunch of classes into strings and
back.

There are a few caveats, though.
OmniXMLProperties is heavily under-
documented. There is a demon-
stration program in the OmniXML
package, but it doesn’t show half
the possibilities that OmniXMLProp-
erties gives you. The Delphi 5

compiler doesn’t like its way of
using inherited indexed accessors
(I’m afraid I don’t know about
newer Delphi versions). Some-
times it just stops the compile pro-
cess with an Internal Error.
Luckily, a simple Build all always
solves the problem.

The RSSWriter-Properties pro-
ject from this month’s download
implements the OmniXMLProp-
erties-enabled RSS writer.

OmniXMLPersistent
And Other Tidbits
If you only need class persistence
without XML mapping, you can
probably live with the much sim-
pler OmniXMLPersistent unit. It does
not require you to create any
special classes or use the under-
documented accessor. You simply
put all the data that needs to
be saved into the published section
of the class and then use the
TOmniXMLWriter class to convert it
to an XML document (or a node
inside a larger document). To read
it back, use the TOmniXMLReader
class.

To do its magic, OmniXMLPersis-
tent uses the Delphi type informa-
tion (using the TypInfo unit) to
access published properties, and
then iterates over all the proper-
ties, converting them to a string
representation (using the relevant
functions from the OmniXMLUtils
unit, of course), and storing them
into the XML document. The code
also correctly handles nested
classes and collections.

To get a grasp of this unit, see
the nice demo in the OmniXML\
demos\Storage directory once
you have downloaded OmniXML.

There are some other less
important units in the OmniXML
package too. OmniXMLDatabase
shows how to convert database
data into an XML document and
back. Although the code looks
useful, I think it is too trivial in the
current incarnation. It could, how-
ever, be a good basis for a more
thorough database dumper.
Would anybody like to step
forward and write one?

For those still working with INI
files, there is an INI file replace-
ment, OmniXMLConf. It sports a
TINIFile-like interface on the
public side, but uses an XML
document to store the settings.

Finally there is a unit with a
really small audience: OmniXML-
Shared is a manager for shared
XML documents stored in
Windows shared memory.

So what can I say about
OmniXML in conclusion? It is rela-
tively small, fast, and standards-
compliant (although not fully
implementing everything in the
DOM). It is portable and has lots of
useful goodies. As for references,
GExperts 1.2 uses it to manage
internal storage, and that tells us a
lot about how reliable it is.

Primoz Gabrijelcic is R&D
Manager of FAB d.o.o. in
Slovenia. You can contact him at
gp@fab-online.com

type
TRSSItem = class(TGpXMLData)
public
constructor Create(node: IXMLNode); override;
property Title: string index 0 read GetXMLProp write SetXMLProp;
property Link: string index 1 read GetXMLProp write SetXMLProp;
property Description: string index 2 read GetXMLPropCData write

SetXMLPropCData;
end; { TRSSItem }
TRSSItems = class(TGpXMLList)
public
constructor Create(parentNode: IXMLNode; childTag: string); reintroduce;

end; { TRSSItems }
constructor TRSSItem.Create(node: IXMLNode);
begin
inherited;
InitChildNodes(
['title', 'link', 'description'],
['', '', '']);

end; { TRSSItem.Create }
constructor TRSSItems.Create(parentNode: IXMLNode; childTag: string);
begin
inherited Create(parentNode, '', 'item', TRSSItem);

end; { TRSSItems.Create }

➤ Listing 6: OmniXMLProperties-enabled RSS mapper.

procedure TForm1.CreateSampleRSS;
var
rss: TRSS;

begin
rss := TRSS.Create;
try
with rss.Add do begin
Title := 'Test title 1';
Items.Add.Title := 'Item 1';
Items.Add.Title := 'Item 2';

end; //...
Memo1.Lines.Text :=
rss.AsString;

finally FreeAndNil(rss); end;
end; { TForm1.CreateSampleRSS }

➤ Listing 5: RSS generation
the classical way.

