
38 The Delphi Magazine Issue 107

Many Faces Of
An Application
by Primoz Gabrijelcic

Quick, what is the first line that
a Delphi program executes

when it starts? A typical new
Delphi programmer most probably
won’t have a clue, and wouldn’t
care. For most programmers,
Delphi works automagically:
create a new project, add some
events, click Run and everything
works (or crashes!).

But still, sometimes we can use
this seemingly useless knowledge.
A typical example would be a pro-
gram that allows only one instance
to be running. If a user tries to start
the program for a second time, the
program simply terminates (or
brings the first instance to the fore-
ground and then terminates).

Such code should execute
before the forms layer is running to
prevent the main form from show-
ing up. The proper way is to put it
into the application’s project file,
the one with the .dpr extension.

Anatomy Of A Delphi Project
Before we make any modifications
to the project file, we should
understand its inner workings. A
simple project with two forms is
shown in Listing 1. If you want to
create such a project yourself,
start with a new application, add a
form (File | New Form,) and open
the project source by selecting
Project | View Source.

As you can see, the project starts
with the program keyword, which
indicates the start of a Pascal pro-
gram (yes, I know the language is
called Delphi now, but this key-
word hasn’t changed since the old
days), followed by the uses, where
all automatically created forms are
referenced, followed by a line to
slurp in the version resource and
icon ($R) and, finally, by a main pro-
gram (begin..end). A simple Pascal
program, indeed.

The true magic is hidden inside
the Application object (which is

of type TApplication), which
encapsulates our Delphi applica-
tion. The main program first
initializes it, creates two forms,
and calls Run, which is responsible
for displaying forms, handling
events, etc. The code returns from
the Run method only when the
application terminates.

If you wonder how Run knows
which form is the main application
form, the answer is simple: the first
form ever created is the main form.
Try starting this small application.
Form1 should appear. Close it and
reverse the order of CreateForm
statements so that Form2 will be
created first. Compile. Start the
application again and Form2 will be
displayed.

The answer seems simple now:
in order to execute any code before
the forms system is initialized, add
the code before Application.Ini-
tialize. If you want to exit the pro-
gram after this code is executed,
call Exit or skip the Applica-
tion.Initialize and following
steps with a conditional statement.
A simple pseudo-code showing the
basic implementation of multiple-
instance checking code in Listing 2
demonstrates this approach.

There are many methods to
check for multiple instance, search
the your Collection 2003 CD-ROM
or the Borland newsgroups for
details. One of those methods is
implemented in the MultiInst
project, available in the source
code files for this issue.

A Two-Faced Application
By modifying the project file, then,
we can achieve all sorts of interest-
ing effects.

We can, for example, write an
application that shows us either
Form1 or Form2, depending on how
the application is called. A simple,
naive approach to this problem is
shown in Listing 3.

The code seems simple enough.
If the first parameter on the com-
mand line is 1 (ie if the user starts
the program with project1 1),
Form1 is created (and shown in the
Run method). If this parameter is 2,
Form2 is displayed. But what if
neither of those parameters is
provided? Then Runwill notice that
no forms were created and it
will silently terminate the
application.

There is a problem with this
code, however. Delphi IDE exten-
sively modifies the project source
and it gets easily confused by our
changes. If you make the modifica-
tions from Listing3 and try to run
the code, the IDE will report an
error saying Call to Applica-
tion.CreateForm is missing or incor-
rect. Well, the IDE is clearly wrong,
but that is no consolation to us.

program Project1;
uses
Forms,
Unit1 in 'Unit1.pas' {Form1},
Unit2 in 'Unit2.pas' {Form2};

{$R *.RES}
begin
Application.Initialize;
Application.CreateForm(
TForm1, Form1);

Application.CreateForm(
TForm2, Form2);

Application.Run;
end.

begin
if AnotherInstanceIsRunning
then begin
ActivateAnotherInstance;
Exit;

end;
Application.Initialize;
Application.CreateForm(
TForm2, Form2);

Application.CreateForm(
TForm1, Form1);

Application.Run;
end.

➤ Listing 1:
Simple Delphi project.

➤ Listing 2:
Single-instance application.

begin
Application.Initialize;
if ParamStr(1) = '1' then
Application.CreateForm(
TForm1, Form1)

else if ParamStr(1) = '2' then
Application.CreateForm(
TForm2, Form2);

Application.Run;
end.

➤ Listing 3: Non-working
two-faced application.

July 2004 The Delphi Magazine 39

Luckily, we can make a two-faced
application and still keep Delphi
happy. The trick is to add the
semicolon at the end of the first
Application.CreateForm. This will
unbreak the Delphi parser while
keeping the semantics of our
program untouched (see Listing 4
and also the TwoFaced sample
application).

Master And Servant
That all sounds easy, but how can
we combine the windowed (forms-
based) aspect of an application
with something completely differ-
ent, for example an SvCom-based
service application? (For the unini-
tiated, SvCom is a wonderful ser-
vice-writing framework and can be
found at www.aldyn-software.
com.) The problem here is that the
GUI part of an appl uses forms (a
fact we all know by now I’m sure)
while the SvCom service is based
on another Application object,
based on the SvCom_NTService unit.
How can we combine the GUI
Application.Initialize (where
Application is an object in the
Forms unit) with a service Applica-
tion.Initialize (where Applica-
tion is an object in the
SvCom_NTService unit)? By fully
qualifying each object, of course.
Instead of simply using Application
we must write Forms.Application
for the GUI object and SvCOM_NTSe-
rvice.Application for the service
object. Listing 5 demonstrates this.
The sample application in this list-
ing will behave like a service unless

it is called with the /config switch,
in which case it will display a con-
figuration dialog for the service.

Service, Config, Monitor
The code in Listing 5 is taken from
my service/configuration/monitor
framework. SCM (for short) is the
framework I use when writing a ser-
vice application. It allows one
application to function as a service
application, a configuration
module for this service applica-
tion, a service-monitoring tray icon
(which allows the user to interac-
tively start/stop the service), and

as a service installer and
startup control, so you
don’t have to call the net
command to start/stop
the service.

For the demonstra-
tion, a simple batch file
starts the testservice
SCM-based application,
displays the tray status
icon, and opens a config-
uration dialog, is shown
in Listing 6.

The code is too
lengthy (and off-topic)
to show here. See the

SCM project in the source code for
more information. Most of the skel-
eton is documented in its project
file (SCM.dpr). To compile it, you
will need SvCom version 5 or 6.

To simplify the use of this frame-
work, there is also an SCM genera-
tion exper:, a simple Delphi expert
(which also works fine as a
standalone application) that dis-
plays a configuration dialog and
generates a customized service/
configuration/monitor applica-
tion, which you can then develop
further. An SCMExpert configura-
tion dialog is shown in Figure 1.

This concludes our topic for
today. If you have any problems, or
if you find a new and interesting
way of modifying the project file,
feel free to contact me.

Primoz Gabrijelcic is R&D Man-
ager of FAB d.o.o. in Slovenia.
You can contact him by email at
gp@fab-online.com

begin
Application.Initialize;
if ParamStr(1) = '1' then begin
Application.CreateForm(TForm1, Form1);

end else if ParamStr(1) = '2' then
Application.CreateForm(TForm2, Form2);

Application.Run;
end.

➤ Listing 4: Two-faced application with an IDE workaround.

begin
if SvComFindCommand('config') then begin
if not ActivateExistingConfig then begin
//When run with the /config switch, display the configuration dialog.
Forms.Application.Initialize;
Forms.Application.CreateForm(TfrmConfig, frmConfig);
Forms.Application.Run;

end;
end else begin
SvCom_NTService.Application.Initialize;
SvCom_NTService.Application.CreateForm(TscmServiceSvc, scmServiceSvc);
try
if not ProcessServiceCommands(scmServiceSvc) then
//When run without a recognised switch, create the service module.
SvCom_NTService.Application.Run;

except
on E: Exception do
MessageBox(0,PChar(E.Message),scmServiceDescription,MB_OK +
MB_ICONERROR);

end;
end;

end.

➤ Listing 5: Combination of a GUI and an NT service.

C:\> testservice /install
C:\> testservice /start
C:\> testservice /monitor
C:\> testservice /config

➤ Listing 6: Starting an
SCM-based service.

➤ Figure 1

