
48 The Delphi Magazine Issue 112

Thread Pooling,
The Practical Way
by Primoz Gabrijelcic

Recently I was working on an
application. It was not a com-

plicated one: a simple GUI client, a
server and an API to access the
server. A typical small two-tier
application. This time, however,
the wise people in the company
have decided to use SOAP for
the client-server conversation (the
client being the GUI app and the
API layer).

It sounded pretty simple, but
very soon we found SOAP requests
take very different amounts of time
to execute. Some requests were
simple and could be executed
immediately, in the thread that was
running the TCP/IP (we are using
ICS, so we only have one TCP
thread in the server), while other
requests were taking a long time (a
non-indexed full text search over
the embedded database managed
by the same server: you get the pic-
ture) and we simply had to move
them to another thread.

After talking about dynamic
thread creation and thread pool-
ing, we decided to reuse an existing
mechanism: the system thread
pool. That’s where all the trouble
started.

As we found out, the system
thread pool in Windows 2000 (plus
XP and 2003) is woefully inade-
quate for any serious use. It seems
that its designer was only thinking
about really trivial usage and
expected everyone else to create
their own thread pool. Luckily, it
was possible to create a fully-
fledged pooling layer based on the
system thread pool and the appli-
cation was saved. As I am not
expecting you to take me at my
word, the rest of this article will
describe our solution. But first, a
short introduction.

The System Thread Pool
The system thread pool was intro-
duced in Windows 2000. It allows

for a simple implementation of
some frequently occurring pat-
terns, asynchronous function
execution, periodic function exe-
cution, execution when a kernel
object becomes signalled, and exe-
cution when an asynchronous
operation completes.

The aspect I find most interest-
ing is the asynchronous function
execution. The interface is really
trivial: there is only one function,
QueueUserWorkItem, which takes
just three parameters: the address
of the function to execute, an arbi-
trary pointer we want to pass to
that function, and some flags that
can slightly modify the way our
function is called.

After we call QueueUserWorkItem
the operating system will allocate
a free thread from the system
thread pool (a pre-allocated pool
of threads) and ask it to execute
our function. When the function
exits, the thread will be returned to
the pool and will wait for another
work item to execute.

A very simple application (which
is in the sub-folder 01 queue work
item in the source for this article)
demonstrates the use of Queue-
UserWorkItem. As you can see in
Listing 1, we simply call QueueUser-
WorkItem with the address of the
function WorkItem and the default
flags, and check the result (it
should always be True). A moment
later Windows will execute the
WorkItem function, which will beep,
sleep, and beep. Please note that
this function is not called in the
context of the main thread but in a
context of an unknown system
thread: you are advised not to call
VCL functions directly and to syn-
chronise all access to global data.

There is not much more to tell
about the QueueUserWorkItem. If you
want to read more, check the
MSDN, Marcel van Braken’s article
High Performance Client/Server

Applications in Issue 100, and
Jeffrey Richter’s excellent book
Programming Applications for
Microsoft Windows, Fourth Edition.

A (Not So Short)
List of Problems
As we have seen, asynchronous
execution with the system thread
pool is trivial: a true ‘fire and for-
get’ operation. It does not, how-
ever, offer any control at all over
the execution of the work items we
are scheduling.

The first question that the docu-
mentation doesn’t answer is what
happens with the queued (and not
yet completed) work items when
an application terminates, either
normally or via TerminateProcess.

If you were clicking rapidly on
the button from the sample appli-
cation I mentioned before, you
may have noticed that calling
QueueUserWorkItem doesn’t guaran-
tee that the function will start exe-
cuting immediately. The operating
system starts a few (typically two)
functions immediately and puts
the others in the queue. Only if the
queue becomes too long will it
start new threads and execute
more functions simultaneously.
The problem here is that we have
no control over this process. The
system thread pool will grow and
shrink by itself, and we simply
don’t know how many work items
have already started and how
many are still waiting in the queue.

This brings us to another prob-
lem: if a work item is queued for a
long time, maybe we would like to
cancel its execution. A typical
application would be the SOAP
model we examined in the intro-
duction: if the function takes too
long to be executed we would
simply like to return a timeout
status to the client and cancel the
function. The system thread pool,
however, does not offer such
functionality.

There is also no indication that a
work item has completed its
execution. We must program it by
ourselves.

In simpler words: we need an
infrastructure that will offer us
good control over the execution of
work items, a way to terminate

December 2004 The Delphi Magazine 49

work items (while they are running
or even before they are started)
and a communication mechanism
that will notify us when work items
are completed.

Problem Solving
Let us find out the answer to the
first question: what happens to
queued work items when the appli-
cation terminates. The answer is
quite simple: they are terminated
immediately.

The proof is in the 02 cancelling
queue work item source code
folder. This is a simple modifica-
tion of the example from Listing 1:
instead of waiting one second
between the beeps, this applica-
tion waits ten seconds. That gives
you enough time to schedule a
work item, wait for the first beep,
and close the application. The
second beep will never happen.

That was simple, so let’s move
on. How can we count the number
of currently executing work items?
The simplest approach is the best:
we’ll use a semaphore. Or better,
two semaphores: one to count
scheduled work items (we’ll incre-
ment it when QueueUserWorkItem
is called and decrement it at the
end of the work item), another to
count work items that are execut-
ing (we’ll increment it at the begin-
ning of the work item function and
decrement it at the end).

The demonstration program in
the source folder 03 counted work
items (a shortened version of
which is shown in Listing 2) simpli-
fies this approach some more,
instead of semaphores it uses
TGpCounter: a very thin layer
around semaphores (TGpCounter
is part of my synchronisation
library GpSync, which is described
in Issues 86 and 91).

As you can see in the code, a
click on the button first increments
the number of scheduled items,
then calls QueueUserWorkItem, and
in the event of a failure decrements
this number. This approach, while
not an example of very good
coding, ensures that the counter
really reflects the number of
scheduled items. The WorkItem
function first increments another
counter, executes the payload (ie
beep, sleep, beep) and decrements
all the counters. The timer-
triggered code in Timer1Timer
checks the values of both counters
and logs them on every change.

If you play with the program a
little, you’ll see an experimental
proof for the behaviour I men-
tioned before. Windows will not
immediately execute all the work
items we are scheduling: some will
wait for pool threads to become
free. Only if you persistently click
the button (thus growing the
queue of work items waiting for
free threads) will the system
thread pool will be extended and
new work items scheduled.

The biggest problem with this
behaviour is that we have abso-
lutely no control over work items
that were queued but have not yet
been allocated to a free thread.
They lie in limbo and we can nei-
ther communicate with them nor
terminate them. The only solution
I can see is that we implement the
queuing ourselves. We should
keep the work items in an internal

uses
GpWinThreadPool;

function WorkItem(context: pointer): DWORD; stdcall;
begin
MessageBeep($FFFFFFFF);
Sleep(1000);
MessageBeep($FFFFFFFF);
Result := 0; // ignored

end;
procedure TForm1.Button1Click(Sender: TObject);
begin
if QueueUserWorkItem(@WorkItem, nil, WT_EXECUTEDEFAULT) then
ListBox1.ItemIndex := ListBox1.Items.Add('Work item queued')

else
ListBox1.ItemIndex := ListBox1.Items.Add('QueueUserWorkItem failed. '+
SysErrorMessage(GetLastError));

end;

➤ Listing 1: Using the system
thread pool for asynchronous
function execution.

const
CCountScheduledItems =
'/Gp/TDM/ThreadPooling/Demo/03/ScheduledWorkItems';

CCountRunningItems =
'/Gp/TDM/ThreadPooling/Demo/03/RunningWorkItems';

function WorkItem(context: pointer): DWORD; stdcall;
begin
try
TGpCounter.Increment(CCountRunningItems);
try
MessageBeep($FFFFFFFF);
Sleep(1000);
MessageBeep($FFFFFFFF);
Result := 0; // ignored

finally TGpCounter.Decrement(CCountRunningItems); end;
finally TGpCounter.Decrement(CCountScheduledItems); end;

end;
procedure TForm1.Button1Click(Sender: TObject);
begin
FCountScheduled.Inc;
if QueueUserWorkItem(@WorkItem, nil, WT_EXECUTEDEFAULT)
then
ListBox1.ItemIndex :=
ListBox1.Items.Add('Work item queued')

else begin
FCountScheduled.Dec;
ListBox1.ItemIndex := ListBox1.Items.Add(
'QueueUserWorkItem failed. '+
SysErrorMessage(GetLastError));

end;

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
FCountScheduled :=
TGpCounter.Create(CCountScheduledItems);

FCountRunning := TGpCounter.Create(CCountRunningItems);
FLastRunning := -1;
FLastScheduled := -1;

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
FreeAndNil(FCountScheduled);
FreeAndNil(FCountRunning);

end;
procedure TForm1.Timer1Timer(Sender: TObject);
var
running : integer;
scheduled: integer;

begin
running := FCountRunning.Value;
scheduled := FCountScheduled.Value;
if (running <> FLastRunning) or (scheduled <>
FLastScheduled) then begin
ListBox1.ItemIndex := ListBox1.Items.Add(Format(
'running: %d, scheduled: %d', [running, scheduled]));

FLastRunning := running;
FLastScheduled := scheduled;

end;
end;

➤ Listing 2: Implementing
scheduled/executing counters.

50 The Delphi Magazine Issue 112

queue, monitor the number of
scheduled/executing work items
and only call QueueUserWorkItem if
not too many work items are cur-
rently executing (‘not too many’
being very application-dependent
and as such must be set by the pro-
grammer). This approach also
gives us a simple way to terminate
work items not yet scheduled to
the system thread pool: we just
remove them from our queue.

A Little Pooling Framework
Adding a queue to the program in
Listing 2 would bring us nowhere
as we would be left with a totally
non-reusable mess. The time has
come to put some classes in the
game and start thinking in an
object oriented manner.

First, we need a thread pool
manager (TGpThreadPoolManager),
which is the central class we’ll be
working with. We’ll set the parame-
ters there (maximum number of
queued work items, maximum time
we are willing to leave a work item
in the queue, and so on), use it to
schedule work items and to receive
a notification when work item pro-
cessing will be completed.

Because we will have to store
some data together with a work
item, we won’t be using global func-
tions any more. Each work item will
be represented by an instance of a

descendent of
the TGpTPWork-
Item class. The
scheduler will
execute the
virtual method
Execute which
we must
override in
our descended
class.

The real work-
horse is an
internal thread
(called TGpTP-
Thread), which is
managed by the
thread pool
manager. This thread accepts new
work items, monitors the length of
the schedule queue and the
number of currently executing
work items, and sends ‘operation
completed’ notifications back to
the thread pool manager. It also
implements the cancellation mech-
anism. Communication between
the thread pool manager and
worker thread is implemented with
two message queues (also part
of the already-mentioned GpSync
library).

The framework also uses three
TGpCounters to communicate
number of queued items (stored in
the internal list), pooled items
(sent to the QueueUserWorkItem but

not yet executing), and executing
items from worker thread back to
the manager and to the application
using this manager.

A careful examination of Figure
1, which depicts this framework,
will also show two lists managed
by the thread (one holds internally
queued items, another items that
were already sent to the Queue-
UserWorkItem) and a per-work item
event, which is used to cancel this
event during its execution.

All this is neatly packed in the
GpWinThreadPool unit.

Putting It All To Work
The code in Listing 3 (which is part
of the project in this month’s

➤ Figure 1

type
TWIBeep = class(TGpTPWorkItem)
private
wibDelay_ms: integer;

public
constructor Create(delay_ms: integer);
procedure Execute; override;

end;
procedure TForm1.Button1Click(Sender: TObject);
var wi: TWIBeep;
begin
wi := TWIBeep.Create(3000);
// FManager takes the ownership of the work item
FManager.Schedule(wi);
Log(Format('Scheduled work item #%d', [wi.UniqueID]));
// in all cases, status will be reported via the
// FManager.OnWorkItemDone

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
FLastExecuting := -1;
FLastPooled := -1;
FLastQueued := -1;
FManager := TGpThreadPoolManager.Create;
FManager.MaxPooled := 3;
FManager.MaxQueueLength := 5;
FManager.MaxQueuedTime_sec := 3;
FManager.OnWorkItemDone := HandleWorkItemDone;
FManager.OnThreadError := HandleThreadError;

end;
procedure TForm1.HandleWorkItemDone(sender: TObject;
workItem: TGpTPWorkItem);

var msg: string;

begin
case workItem.Status of
tpmsCompleted : msg := 'Completed.';
tpmsThreadTimeout : msg := 'Timed out waiting on thread
queue.';

tpmsThreadQueueFull: msg := 'Thread queue is full.';
tpmsException : msg := 'Work item raised an
exception.';

tpmsWin32Error : msg := 'QueueUserWorkItem failed.';
tpmsCanceled : msg := 'Work item was canceled.';
tpmsServerBusy : msg := 'Server is busy.';
else msg := 'Unknown error has occured.';

end; //case
Log(Format('#%d: %s %s', [(workItem as TWIBeep).UniqueID,
msg, workItem.LastError]));

end; { TForm1.HandleWorkItemDone }
{ TWIBeep }
constructor TWIBeep.Create(delay_ms: integer);
begin
wibDelay_ms := delay_ms;

end;
procedure TWIBeep.Execute;
var
iRound : integer;
sleepRounds: integer;

begin
MessageBeep($FFFFFFFF);
sleepRounds := wibDelay_ms div 100;
for iRound := 1 to sleepRounds do begin
Sleep(100);
if Canceled then Exit;

end; //for
MessageBeep($FFFFFFFF);

end;

➤ Listing 3: Using the thread pooling framework.

December 2004 The Delphi Magazine 51

source called 04 manager and work
item classes) demonstrates how
the framework is used. Some parts
were removed for brevity: check
the source for the full story.

As you can see, the WorkItem
function was replaced with the
TWIBeep class. The method
Button1Click simply creates a new
instance of this class and passes it
to the FManager’s Schedule method.
It then prints the unique ID that
was given to this work item and
exits.

FManager is an instance of the
TGpThreadPoolManager class cre-
ated in the FormCreate handler. The
code sets the parameters to a maxi-
mum of three work items sent to
the QueueUserWorkItem (MaxPooled)
at any time, a maximum of five
items in the internal queue (Max-
QueueLength), and a maximum work
item lifetime of three seconds
(MaxQueuedTime_sec). It also sets an
error handler (which should never
be called if my code is perfect, as it
only reports internal errors) and
the work item completed handler.

After the manager does its
magic, the same work item
instance is passed to the OnWork-
ItemDone handler (method Handle-
WorkItemDone). It checks the status
of the work item and prints it out. If
an error occurred, it will also print
error description.

A point worth mentioning is that
the OnWorkItemDone will always be
called, even if the thread blocks
and stops receiving messages from
the thread manager, if Queue-
UserWorkItem fails, or if the work
item’s Execute method causes an
exception. Therefore, you should
always check the work item’s
Status in the OnWorkItemDone
handler.

In the end TWIBeep.Execute
received a facelift too. It does its
sleeping in small steps (100ms
each) and after each step checks to
see if it has been cancelled (if the
application executed FManager.
CancelAll). If that happens, Execute
will exit immediately.

Work Item Flow
The best way to understand the
innards of the GpWinThreadPool unit
is to follow a work item through the

framework. As we have already
seen, the work item is first passed
to the thread manager’s Schedule
function. It assigns a new unique ID
to the work item and marks the
time it was received. This time is
stored in UTC as we really don’t
want a change to Daylight Saving
Time during the work item pro-
cessing to break our calculations
(see Issue 65 for more information
on time calculations). The work
item is then sent to the worker
thread via the message queue.

The worker thread’s Schedule
method sets some internal param-
eters the work item will need later.
Next it checks if the internal queue
is already too long, in which case
the work item will be immediately
refused (it will be sent back to the
thread manager via the message
queue and the thread manager will
call the OnWorkItemDone handler). If
the queue is not too long, the work
item will be added to the internal
queue and Schedule will trigger
another part of the scheduler by
signalling an event.

This event will cause Schedule-
Next to be called. If there are not
too many outstanding work items
already being processed by the
QueueWorkUserItem, it will call that
function (via the internal method
ScheduleWorkItem). After that, it will
check if any work item in the inter-
nal queue is already too old, in
which case it will be refused with
the ‘server busy’ status.

ScheduleWorkItem calls Queue-
WorkUserItem, always passing it the
same function, TPWorkItemExecutor,
but setting the context parameter
to the work item instance.

Now the story stalls for an
indefinite time. At some moment
later our friendly Operating
System starts executing the
TPWorkItemExecutor. This is a
simple function which maps the
context parameter back to the
work item instance and calls its
Schedule method.

Schedule does the work in a simi-
lar way to the WorkItem in Listing 2:
it increments and decrements
counters, and calls the work item’s
Execute somewhere in between.
Besides that, it traps exceptions
and maps them to the work

item’s Status and LastError prop-
erties. Importantly, it checks at the
very beginning if the work item
was already cancelled and exits
immediately if this is true.

When Schedule finishes its work,
TPWorkItemExecutor calls the
method assigned to the work
item’s wiOnDone handler. In our
case, this is HandleOnDone method
(from the worker thread).

HandleOnDone (which is called
from the context of the system
thread, not the thread pool worker
thread!) synchronises the comple-
tion notification by sending a mes-
sage and an address of the work
item instance back to the worker
thread via the same message
queue that is used for manager-to-
thread communication.

The worker thread processes
this message in the Request-
Completed method. It removes the
work item from the internal
queues, sends the work item
instance to the thread manager,
and sets the internal scheduler
event, which will cause the Sched-
uleNext to be called again and pos-
sibly schedule a new work item.

Finally, the thread manager
processes this message in its own
RequestCompleted method, which
simply calls the OnWorkItemDone
handler (if assigned) and destroys
the work item request.

That is the end of a work item’s
long journey. I don’t have much to
add to that, except maybe that if
you intend to use the TGpThread-
PoolManager from a thread, you
should make sure that somebody
in this thread will process Win-
dows messages, because the
message queue used to send the
confirmation messages from the
worker thread back to the man-
ager depends on that. The easiest
way of achieving that is to
use MsgWaitForMultipleObjects(..
., QS_ALLINPUT) instead of a simple
WaitFor... in the thread’s main
loop.

Primoz Gabrijelcic is the R&D
Manager of FAB d.o.o. in
Slovenia. You can contact him at
gp@fab-online.com

