
32 The Delphi Magazine Issue 118

Put It In A Tree
by Primoz Gabrijelcic

We programmers sure want to
complicate our lives. Just

think of the ways you are display-
ing data. Most of the time, TListBox
is enough. But every now and then,
things get complicated. You have
to display hierarchical data (or at
least your customer thinks so) and
there is no way it can be stuffed
into a simple list. When that hap-
pens, you need a tree. What could
be simpler? The internet is full of
Delphi components to display
trees (in most cases you’ll only
need Lischke’s excellent Virtual
Treeview: www.delphi-gems.com).
Sometimes, this is enough: take the
data and display it. But sometimes
this is when your troubles start.

I’ll give you a simple example.
You’ve written software to manage
incidents. To facilitate incident
solving, a discussion can be
attached to it. Discussions can be
big and they can branch in many
directions. Of course, your soft-
ware has to show them in a hierar-
chical way. It’s just that the data
(messages, etc) is stored in the
database, which can only provide a
flat output. You have to rebuild the
tree structure from it, but how?

This is not so rare a problem as
you might think. Hierarchical data
appears everywhere and most of
the time it must be rebuilt from
simple non-hierarchical storage.
Think about mail, news, CVS repos-
itories and databases, not to men-
tion groupware and chat forums.
Trees are everywhere.

To recap, we want to generate
something similar to Figure 1, and
we want to do it from the flat, non-
hierarchical, unconnected data.
We will start with a bunch of mes-
sages (or other atomic data items)
and apply a message threading
algorithm (a group of related mes-
sages is called a thread in most
forum software). This algorithm
returns a list of top-level messages
with child messages attached in a
tree structure. Displaying this will
be left as an exercise for the reader.

(I like to solve problems, not push
the pixels on the screen!)

To be as reusable as possible,
we’ll do it in a high-level way. No
pointers will be used, so the code
runs on both Win32 and .NET.

Ground Rules
Before we start, let’s lay down few
rules. Each message (or any other
atomic data) contains a unique
identifier. In concordance with cur-
rent internet standards, this identi-
fier is a simple string with an
unknown internal structure. Each
message also contains an identifier
for its parent, which can be an
empty string if this is a top-level
(root) message. For example, in the
email world, these identifiers are
usually called MsgID (message ID)
and InReplyTo (ID of the message
we are replying to, in other words
an ID of the parent message).

Instead of implementing a mes-
sage as an object, I decided to
make it an interface, mostly
because we are implementing a
process, which must somehow
attach to the existing infrastruc-
ture. It is much easier to implement
an additional interface in the basic
object (which you are doubtless
already using to represent your
atomic data) than re-derive this
basic object from a different
parent. In some cases, the latter
option is totally unacceptable.

The IGpThreadable interface,
which you’ll have to implement in
your threading-enabled objects,
is shown in Listing 1. Besides

providing access to a unique ID
and the parent’s ID (properties ID
and ParentID respectively), it
declares the properties Parent and
Items. The former is a link from the
child to the parent and the latter
contains links from the parent to
its children. Both will be filled by
the threading method.

The second interface, IGpThrea-
dableContainer, specifies access to
a container of threadable items.
This container is used in a top level
(we’ll pass such container to the
threading method) and again as
wrapped storage for the item’s
children (IGpThreadable.Items).

The last interface, which is only
used to simplify testing of various
threading algorithms, is called
IGpThreader. It declares just one
method called Thread, taking one
parameter: a container we want to
convert into a tree. This is the
method we have to develop.

All three interfaces are declared
in unit GpThreadable.pas, which
also adds two simple base classes:
one implementing IGpThreadable
and the other implementing
IGpThreadableContainer.

Threading 101
First we have to state the require-
ments for the threading algorithm.
It will take a container of objects
which implement IGpThreadable
with ID and ParentID set to appro-
priate values. It then rearranges
those objects so that only root
(top-level) items are stored in the
container. All non-root (child)
items are stored in the Items prop-
erty of their respective parents. All
child items point back to the
parents via the Parent property.
The original order for each level
must also be preserved.

➤ Figure 1: XanaNews display of a
borland.public.delphi.language.basm newsgroup.

June 2005 The Delphi Magazine 33

To understand the problem, we
can start with a naive implementa-
tion. It will take messages one by
one (as they appear in the original
container). For each message, it
will try to insert it into an already-
built tree. If this fails, it will leave
the message in the container and
consider it a root message.

Besides being very quadratic by
nature (for each message we have
to check all the already-processed
items), this threading algorithm
exposes a big problem: it doesn’t
handle out-of-order messages.

In the real world (and especially
when dealing with email mes-
sages), child objects can appear
before the parents. If you are sub-
scribed to at least one mailing list
sometimes replies arrive before
the message they are replying to.

The naive threader we have just
described doesn’t handle this situ-
ation well. It will take a response,
try to find a parent and fail, leaving
the response as a root item. When
it later encounters the parent it
won’t know that it has to attach an
existing child item to this parent.

We can extend the algorithm to
walk over the already-built trees,
searching for items that must be
inserted into the child list of the
currently processed item, but that
will slow down this already
sluggish method even more.

This simple algorithm is imple-
mented in the unit GpQuadratic-
Threader.pas and doesn’t deserve
to appear in the printed article. It is
nevertheless included in the dem-
onstration program so you can see
for yourself how slow it is. It needs
0.3 seconds to thread 1,000

messages on my Athlon 1266,
which is fine, but fails miserably
with 10,000 messages, requiring
more than 50 seconds for the task.
This is simply not acceptable.

Hashed Threading
Let’s step back and look at the
problem from a distance. We have
to build a forest (as such a collec-
tion of trees is usually called, in
nature and in computer science),
step by step. We have to take a
message, decide what to do with it
and place it somewhere.

The next big question is how
we can speed up this decision. It
would be great if we could just look
at the message’s ID and ParentID
and automatically filter out the
already-built trees that are of no
use to us. In other words, we want
to connect each ID to the trees that
contain this ID, either as a unique
ID or as a ParentID. In other words,
for each ID we want to keep a list of
candidate trees.

We could build a TStringList
descendant where we would insert
IDs into the Strings[]property and
associated lists of trees (maybe
represented as TInterfaceLists)
into the Objects[]property. Opera-
tions on such a list (inserting and
searching) would be quite slow,
however. We’d do much better
with a more advanced structure,
like a hash table.

As hash tables are not really a
topic for this article, we’ll make do
with a very simple implementation
that comes with Delphi: TString-
Hash from IniFiles.pas. If you want
to learn more on hashing, read
Julian Bucknall’s articles and
search the internet (http://
burtleburtle.net/bob/hash is a

good starting point). Suffice to say
that a hash table allows us to treat
long strings as if they were repre-
sented by a numbers, stored in a
structure that allows for fast inser-
tion and searching.

Like the rejected naive imple-
mentation, this algorithm (let’s
call it hashed threading) takes
items from the container one by
one (see the method Internal-
Thread in the Listing 2). For each
item, it calculates a hash of the
ParentID identifier and looks into a
hash table to retrieve a list of all
the trees encountered so far that
contain this ParentID.

Next it checks if the currently
processed item can be inserted
into one of these trees as a child of
an existing item. The method
ListToExistingParent walks over
all trees in this list and, for each
tree, checks to see if it contains
an item that is a parent to the cur-
rently processed item. If a match is
found, the program adds the cur-
rently processed item to the child
list of this parent. It also maps this
tree to the unique ID of the mes-
sage we are processing, by adding
it to its tree list. We may need this
link later when someone wants to
become a child of this item.

As there can be only one parent
for each item, there is no need to
check the rest of the trees in the
list once we find a match.

The harder part is to connect
already built trees as the children
of the currently processed item
(see the method ListToExist-
ingChildren, shown in Listing 2).
As we have seen before, children
can appear before parents so there
can be more than one tree waiting
to be connected to the currently

IGpThreadable = interface(IUnknown)
['{F6403548-FD09-48D7-AD69-E13A908E59D6}']
function GetID: string;
function GetItems: IGpThreadableContainer;
function GetParent: IGpThreadable;
function GetParentID: string;
procedure SetID(const value: string);
procedure SetParent(const value: IGpThreadable);
procedure SetParentID(const value: string);
property ID: string read GetID write SetID;
property Items: IGpThreadableContainer read GetItems;
property Parent: IGpThreadable read GetParent
write SetParent;

property ParentID: string read GetParentID
write SetParentID;

end; { IThreadable }
{:Container for threadable items.
@since 2005-01-31

}
IGpThreadableContainer = interface(IUnknown)

['{1C3706A7-31F4-46D9-A81F-A9163FC3376F}']
function Add(item: IGpThreadable): integer;
procedure Clear;
procedure Delete(idxItem: integer);
function GetCount: integer;
function GetItem(idxItem: integer): IGpThreadable;
procedure SetItem(idxItem: integer; value: IGpThreadable);
procedure SetSize(numItems: integer);
property Count: integer read GetCount;
property Items[idxItem: integer]: IGpThreadable
read GetItem write SetItem; default;

end; { IThreadableContainer }
{:Threader for threadable containers.
@since 2005-02-02

}
IGpThreader = interface(IUnknown)
['{F2E5D0C3-4B5B-4C24-9F4A-70C062B4705D}']
procedure Thread(container: IGpThreadableContainer);

end; { IGpThreader }

➤ Listing1: Threading interfaces.

34 The Delphi Magazine Issue 118

processed item. To find such trees,
we must calculate a hash of the
item’s unique identifier and
retrieve the associated list of trees.
Then we must check all these
trees. If the root node of a tree
wants to be a child of the current
item, we must connect them. At the
end, we must find the root of the
tree containing the current item
(this may differ from the current
item as it is possible that it was
connected to an existing tree in the
previous step) and add it to the
hash table.

As there can be more than one
child waiting to be connected to
the item, we have to check all the
trees in the list.

If both previous steps failed, we
simply leave the item as a root and
create tree lists for its ID and
ParentID. Both lists will initially
contain only the current item.

When all the entries are pro-
cessed, we have to remove all the
non-root items from the con-
tainer’s main list, which happens in
the DeleteChildren method.

To get a better feel for the vari-
ous data structures used by this
algorithm, a simplified version is
shown in Figure 2.

This algorithm, implemented in
unit GpHashedThreader, is much
faster than the naive implementa-
tion. Even more, it does the job
right. Its time requirements are in
the order of O(n*m) where n is the
number of items being threaded
and m is the average size of a

parent-child tree encountered
during the construction.

Testing on the same data as
before showed great improve-
ment: 10,000 messages were
threaded in less than 0.2 seconds
and 100,000 messages in 2.8 sec-
onds. But this is still not perfect.

Fast As Lightning
I would probably live quite happily
with the hashed threader if a
smarter guy didn’t publish a better
algorithm. At the beginning of this
article, I was talking about internal
incident reporting and discussion
systems. Well, wouldn’t you
believe, I was not making things
up. The threading problem was
published on Slovenian Delphi
forum (www.delphi-si.com, if you
think you can cope with the lan-
guage) by a guy working on just
such a system. Some time later he
published his solution, which I
slightly changed to fit in the frame-
work and added it to my collection
of threading algorithms as GpLee-
Threader (after Lee, its author).

Lee’s threader also uses hash
tables to speed up the searches,
but in a much simpler manner.
While processing the items, it will
only check the ParentID side of the
equation (ie, the same part I was

➤ Figure2: Structures used by the
hashed threading algorithm.

procedure TGpHashedThreader.InternalThread(container:
IGpThreadableContainer);

var
iItem : integer;
item : IGpThreadable;
itemLinked: boolean;

begin
for iItem := 0 to container.Count-1 do begin
item := container[iItem];
itemLinked := false;
if LinkToExistingParent(item, GetRootList(
item.ParentID)) then itemLinked := true;

if LinkToExistingChildren(item, GetRootList(item.ID))
then itemLinked := true;

if not itemLinked then AddToHash(item);
end;
DeleteChildren(container);

end; { TGpHashedThreader.InternalThread }
function TGpHashedThreader.LinkToExistingParent(item:
IGpThreadable; rootList: TGpThreadableList): boolean;

var
iRoot : integer;
parentItem: IGpThreadable;

begin
Result := false;
for iRoot := 0 to rootList.Count - 1 do begin
parentItem := FindItemByID(rootList[iRoot],
item.ParentID);

if assigned(parentItem) then begin
parentItem.Items.Add(item);
item.Parent := parentItem;
InsertIntoList(item.ID, parentItem);
Result := true;
break; //for

end;
end; //for iProxy

end; { TGpHashedThreader.LinkToExistingParent }

function
TGpHashedThreader.LinkToExistingChildren(item:
IGpThreadable; rootList: TGpThreadableList): boolean;

var
iRoot : integer;
root, topParent: IGpThreadable;

begin
Result := false;
iRoot := 0;
while iRoot < rootList.Count do begin
root := rootList[iRoot];
if root.ParentID = item.ID then begin
item.Items.Add(root);
root.Parent := item;
topParent := FindTopParent(item);
if not rootList.Contains(topParent) then
rootList.Add(topParent);

Result := true;
end;
Inc(iRoot);

end;
end; { TGpHashedThreader.LinkToExistingChildren }
procedure TGpHashedThreader.DeleteChildren(container:
IGpThreadableContainer);

var
iItem : integer;
item : IGpThreadable;
lastRoot: integer;

begin
lastRoot := 0;
for iItem := 0 to container.Count-1 do begin
item := container.Items[iItem];
if not Assigned(item.Parent) then begin
container.Items[lastRoot] := item;
Inc(lastRoot);

end;
end;
container.SetSize(lastRoot);

➤ Listing2: Hashed threading

June 2005 The Delphi Magazine 35

solving in LinkToExistingParent). If
a parent is not found in the list of
already processed nodes, it will
add the item to a temporary con-
tainer and remember its location in
another hash table so it can be
quickly retrieved when the appro-
priate parent comes by. If you look
at the implementation, you’ll see
that this approach is also on the
order of O(n*m) (n and m being the
same values as before).

When I benchmarked this algo-
rithm, I couldn’t believe my eyes. It
sure beat my hashed implementa-
tion, threading 100,000 messages
in under a second and 1,000,000
messages in 7.5 seconds (the
hashed threader required more
than 19 seconds to thread through
a million messages).

I couldn’t explain the difference
so I fired up my trusty profiler (for
details see http://gp.17slon.com/
gpprofile) and applied it to the
hashed threader. The result was
truly surprising: about 50% of the
time was spent creating and
destroying TInterfaceListobjects.

As it turns out, the hashed
threader creates a TInterfaceList
for each ID encountered, and then
keeps them mostly empty. The
reason is simple: when it encoun-
ters a leaf node (an item that will
never be a parent to another item)
it must still create an associated
tree, because it doesn’t know yet
that this will be a leaf node. How-
ever, the only item ever appearing
in this list will be the leaf node.

Besides that, a TInterfaceList is
ssssssslowwww. Think molasses:
that slow. Internally, it uses a
TThreadList and locks/unlocks it

(using a critical section) for each
operation, which makes it safe, but
really really (really!) slow. That is
why TGpThreadableContainer, a
simple implementation of IGpThr-
eadableContainer from the unit
GpThreadable.pas, is not really
that simple. Instead of TInter-
faceList it implements a storage
using a dynamically resized array
of IGpThreadable items.

KISS
Time to step back and think. Again.
Obviously, Lee was onto some-
thing, it is much easier to connect a
child to its parent than a parent
to its children, simply because in
the former case, there can be only
one parent. The problem is that we
don’t always know the exact loca-
tion of this parent at the moment
when the child is being processed.
By now you already know why: this
happens when a child is encoun-
tered before its parent. To work
around this problem, Lee’s
threader uses a temporary con-
tainer and the hashed threader
uses a bunch of TInterfaceLists.

There is another workaround.
We can pretend that the problem
doesn’t exist. OK, that is not a good
programming practice, but we can
do the next best thing: we can
make sure that it doesn’t occur.

The solution is incredibly
simple. First we calculate hashes
for all the IDs in the container and
store the location (the array index)
of each ID in the hash table. Then
we iterate over the container again
and for each ParentID check the
hash table. If the ParentID is stored
in the hash table, the hash entry
will contain an index to the parent
and we can connect the item to it.

If there is no such entry in the
hash table, the parent doesn’t
exist and we can just leave the item
in its place and treat it as a root. At
the end, the third pass is done to
remove all non-root items from the
container, just as in the Lee’s solu-
tion and the hashed threader.
Three loops over the container are
needed, that is all, and they are
shown in Listing 3.

Finally, we have an algorithm of
order O(n). Still, it is not notice-
ably faster then Lee’s algorithm. In
fact, the measured numbers are
almost the same, up to two million
messages (after that, the measly
1Gb of memory in my computer
can’t hold the required data struc-
tures any more). Still, it is much
simpler and as such is preferred.
At least by me.

Our task is therefore complete.
We now have a very fast tree gener-
ator. No, we have two! You can use
whichever one you prefer to
thread the data.

If you will be using this knowl-
edge in the real world, I must warn
you that things can be messier out
there. At least check out www.
jwz.org/doc/threading.html where
real-life message threading (as
used in the Netscape Navigator
and IMAP servers) is discussed.

This article would never habe
appeared without www.delphi-si.
com, a guy called Lee_Nover (at
least on the internet), Philip Glass,
Keith Jarret and WA Mozart:
thanks to them all!

Primoz Gabrijelcic is R&D
Manager of FAB d.o.o. in
Slovenia. You can contact him at
gp@fab-online.com

procedure TGpLinearThreader.Thread(container:
IGpThreadableContainer);
begin
ltIDHash := TStringHash.Create(GetGoodHashSize(
container.Count) div 2);
try
CreateIDHash(container);
ReparentItems(container);
DeleteChildren(container);

finally FreeAndNil(ltIDHash); end;
end; { TGpLinearThreader.Thread }
procedure TGpLinearThreader.CreateIDHash(container:
IGpThreadableContainer);

var
iItem: integer;

begin
for iItem := 0 to container.Count-1 do
ltIDHash.Add(container[iItem].ID, iItem);

end; { TGpLinearThreader.CreateIDHash }

procedure TGpLinearThreader.ReparentItems(container:
IGpThreadableContainer);

var
idxParent: integer;
item : IGpThreadable;
iItem : integer;
parent : IGpThreadable;

begin
for iItem := 0 to container.Count-1 do begin
item := container[iItem];
if item.ParentID <> '' then begin
idxParent := ltIDHash.ValueOf(item.ParentID);
if idxParent >= 0 then begin
parent := container[idxParent];
parent.Items.Add(item);
item.Parent := parent;

end;
end;

end; //for iItem
end; { TGpLinearThreader.ReparentItems }

➤ Listing3: Linear threading.

