
GETTING FULL SPEED WITH DELPHI

Primož Gabrijelčič
primoz@gabrijelcic.org

www.thedelphigeek.com
otl.17slon.com

[WHY SINGLE-THREADING IS NOT ENOUGH?]

Multithreading

What?

• The art of doing

multiple things at the
same time

Why?

• The end of free lunch

How?

• OmniThreadLibrary

When?

• Rarely

WHAT?

Threading

• A thread is a line of execution through a
program

– There is always one thread

• Multitasking (and multithreading)

– Cooperative

– Preemptive

• Time slicing

• Parallel execution

Processes vs. Threads

• Pros

– Processes are isolated – data protection is simple

• Cons

– Processes are isolated – data sharing is simple

– Processes are heavy, threads are light

Problems

• Data sharing

– Messaging

– Synchronization

• Synchronization causes

– Race conditions

– Deadlocking

– Livelocking

• Slowdown

WHY?

The End of Free Lunch

© Herb Sutter, www.gotw.ca/publications/concurrency-ddj.htm

What we want

What we have

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

HOW?

Four paths to multithreading

• The Delphi Way
– TMyThread = class(TThread)

• The Windows Way
– FHandle := BeginThread(nil, 0, @ThreadProc,

Pointer(Self), 0, FThreadID);

• The Lightweight Way (AsyncCalls)
– TAsyncCalls.Invoke(procedure begin

 DoTheCalculation;
end);

• OmniThreadLibrary

OmniThreadLibrary is …

• … VCL for multithreading

– Simplifies programming tasks

– Componentizes solutions

– Allows access to the bare metal

• … trying to make multithreading possible for
mere mortals

• … providing well-tested components packed
in reusable classes with high-level parallel
programming support

Project Status

• OpenBSD license

• Actively developed

– 886 commits [code.google.com/p/omnithreadlibrary/]

• Actively used

– 2.0: 1206 downloads

– 1.05: 2028 downloads
[March 1st, 2011]

• Almost no documentation

http://code.google.com/p/omnithreadlibrary/
http://code.google.com/p/omnithreadlibrary/
http://code.google.com/p/omnithreadlibrary/

HOW?

High level multithreading

• Join

• Futures

• Pipelines

• Fork/Join

• Parallel for

• Delphi 2009 required

Join

• Divide and Wait

– Start multiple background calculations

– Wait for all to complete

– No result is returned (directly)

• Two basic forms

– Join(task1 , task2);

– Join([task1 , task2, task3, …
taskN]);

Future

• Wikipedia
– “They (futures) describe an object that acts as a

proxy for a result that is initially not known,
usually because the computation of its value has
not yet completed.”

– Start background calculation, wait on result.

• How to use?
– Future:=TOmniFuture<type >.Create(
 calculation);

– Query Future.Value;

Pipeline

• Multistage process

Pipelines

var
 pipeOut: IOmniBlockingCollection;

pipeOut := Parallel.Pipeline
 .Stage(StageGenerate)
 .Stage(StageMult2)
 .Stage(StageSum)
 .Run;

Fork/Join

• Divide and conquer

– Execute multiple tasks

– Wait for them to terminate

– Collect results

– Proceed

• Subtasks may spawn new subtasks

Fork/Join

max1 := forkJoin.Compute(
 function: integer begin
 Result := …
 end);

max1 := forkJoin.Compute(
 function: integer begin
 Result := …
 end);

Result := Max(max1.Value, max2.Value);

Parallel For

Parallel

 .ForEach(1, CMaxSGPrimeTest)
 .Execute(
 procedure (const value: integer)
 begin
 if IsPrime(value) then
 numPrimes.Increment;
 end);

Messaging

• TOmniMessageQueue

• TOmniQueue

– Dynamically allocated, O(1) enqueue and
dequeue, threadsafe, microlocking queue

• TOmniBlockingCollection

• TOmniValue

Tasks vs. Threads

• Task is part of code that has to be executed

• Thread is the execution environment

• You take care of the task,
OTL takes care of the thread

Task Execution

• CreateTask(task_procedure)

• CreateTask(task_method)

• CreateTask(TOmniWorker_object)

• CreateTask(anonymous_procedure)

Thread Pool

• Starting up a thread takes time

• Thread pool keeps threads alive and waits for
tasks

• Automatic thread startup/shutdown

• User code executed at thread creation

– Connection pool

• .Run ᶒ .Schedule

WHEN?

Danger!

òNew programmers

are drawn to multithreading

like moths to flame,

with similar results.ó

-Danny Thorpe

When To Use

• Slow background process

• Background communication

• Executing synchronous API

• Multicore data processing

• Multiple clients

Keep in mind

• Don’t parallelize everything

• Don’t create thousands of threads

• Rethink the algorithm

• Prove the improvements

• Test, test and test

Be Afraid

• Designing parallel solutions is hard

• Writing multithreaded code is hard

• Testing multicore applicationss is hard

• Debugging multithreading
code is pure insanity

QUESTIONS?

