GETTING FULL SPEED WITH DELPHI

[WHY SINGLE-THREADING IS NOT ENOUGH?]

Primoz GabrijelCic
primoz@gabrijelcic.org
www.thedelphigeek.com
otl.17slon.com

Multithreading

What?

* The art of doing
multiple things at the
same time

Why?

e The end of free lunch

How?

* OmniThreadLibrary

WHAT?

- Threading

* Athread is aline of execution through a
program
— There is always one thread

e Multitasking (and multithreading)
— Cooperative
— Preemptive

* Time slicing
* Parallel execution

Processes vs. Threads

* Pros

— Processes are isolated — data protection is simple

* Cons
— Processes are isolated — data sharing is simple
— Processes are heavy, threads are light

Problems

e Data sharing
— Messaging
— Synchronization
* Synchronization causes
— Race conditions
— Deadlocking
— Livelocking

e Slowdown

WHY?

The End of Free Lunch

Dual-Core Itanium 2 <€<— \What we want

-'

Intel|CPU

{sources: Inte|, Wikipe

renqgs
dia, K. Olukotun)

_~ What we have

Pentium

]
B e
| Transkstors (000) -
@ Clock Spead (MHI)
. e & Poweer (W)
® Perl fClock (ILF)

| | |
1575 L 1985 1990 1965 200k 2005 2010

§n ~ B T i E E E

© Herb Sutter, www.gotw.ca/publications/concurrency-ddj.htm

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

How?

Four paths to multithreading

* The Delphi Way
— TMyThread = class(TThread)

* The Windows Way

— FHandle := BeginThread(nil, 0, @ThreadProc,
Pointer(Self), O, FThreadID);

-+ The Lightweight Way (AsyncCalls)

— TAsyncCalls.Invoke(procedure begin
DoTheCalculation;
end);

* OmniThreadLibrary

4 OmniThreadLibrary is ...

e ... VCL for multithreading
— Simplifies programming tasks
— Componentizes solutions
\ — Allows access to the bare metal

... trying to make multithreading possible for
mere mortals

e ... providing well-tested components packed
in reusable classes with high-level parallel
programming support

Project Status

OpenBSD license

Actively developed
— 886 commits [code.google.com/p/omnithreadlibrary/]

Actively used
— 2.0: 1206 downloads

— 1.05: 2028 downloads
[March 15, 2011]

Almost no documentation ®

http://code.google.com/p/omnithreadlibrary/
http://code.google.com/p/omnithreadlibrary/
http://code.google.com/p/omnithreadlibrary/

How?

High level multithreading

* Join

* Futures
* Pipelines
e Fork/Join

-« Parallel for

* Delphi 2009 required

- Join

e Divide and Wait

— Start multiple background calculations
— Wait for all to complete
— No result is returned (directly)

e Two basic forms
— Join(taskl , task2);

—Join([taskl , t as k2, t ask3,
taskN]) ;

Future

* Wikipedia
— “They (futures) describe an object that acts as a
proxy for a result that is initially not known,

usually because the computation of its value has
not yet completed.”

— Start background calculation, wait on result.
* How to use?

— Future:=TOmniFuture<type >.Create(
calculation);

— Query Future.Value;

Pipeline

* Multistage process

TINE

[T wewr]

STAGE 1 STAGE 2 STAGE 3

STAGE 1

L(| QUELE | }1 TIME

STAGE 1

STAGE 2
STacE 2

L{ | QUEUE | }1 STAGE 3

STAGE 3

> | oureur ||

Pipelines

var
pipeOut: IOmniBlockingCollection;

pipeOut := Parallel.Pipeline
.Stage(StageGenerate)
.Stage(StageMult2)
.Stage(StageSum)
. Run;

Fork/Join

* Divide and conquer
— Execute multiple tasks
— Wait for them to terminate
— Collect results
— Proceed

e Subtasks may spawn new subtasks

Fork/Join

maxl := forkJoin.Compute(
function: integer begin
Result := ..
end) ;
maxl := forkJoin.Compute(
function: integer begin
Result := ..
end);

Result := Max(maxl.Value, max2.Value);

Parallel For

Parallel
.ForEach(1l, CMaxSGPrimeTest)
.Execute(
procedure (const value: integer)
begin

If IsPrime(value) then
numPrimes.Increment;

end);

- Messaging

* TOmniMessageQueue
* TOmniQueue

— Dynamically allocated, O(1) enqueue and
dequeue, threadsafe, microlocking queue

* TOmniBlockingCollection

e TOmniValue

- Tasks vs. Threads

e Task is part of code that has to be executed
* Thread is the execution environment

* You take care of the task,
OTL takes care of the thread

- Task Execution

* CreateTask(task procedure)
 CreateTask(task method)

* CreateTask(TOmMniWorker _object)
* CreateTask(anonymous_procedure)

- Thread Pool

Starting up a thread takes time

Thread pool keeps threads alive and waits for
tasks

Automatic thread startup/shutdown
User code executed at thread creation

— Connection pool

.Run € .Schedule

WHEN?

Danger!

0 N e programmers
are drawn to multithreading
like moths to flame,
wi th siI mil a
-Danny Thorpe

When To Use

* Slow background process

* Background communication
* Executing synchronous API
 Multicore data processing

~ » Multiple clients

' Keep in mind

 Don’t parallelize everything

* Don’t create thousands of threads
e Rethink the algorithm

* Prove the improvements

* Test, test and test

" Be Afraid

* Designing parallel solutions is hard
* Writing multithreaded code is hard
e Testing multicore applicationss i

 Debugging multithreading
code is pure insanity

-
-
- -
-
-
,
,
’,
’,
’,
,
,
,
s
,
Ed
-
-
¢ - - - -

QUESTIONS?

