

IŜƭƭƻΣ LΩƳ tǊƛƳƻȌ DŀōǊƛƧŜƭőƛő ŀƴŘ ǘƻŘŀȅ LΩƭƭ ǘŀƭƪ ŀōƻǳǘ ƳǳƭǘƛǘƘǊŜŀŘƛƴƎ ς and not just any

multithreading but a multithreading in its simplest form ς at least if we limit ourselves to the Delphi

ƭŀƴƎǳŀƎŜΦ LΩƭƭ ōŜ ǇǊŜǎŜƴǘƛƴƎ ǘƘŜ hƳƴƛ¢ƘǊŜŀŘ[ƛōǊŀǊȅ project, an open source library that tries to bring

ōŀŎƪ Ŧǳƴ ǘƻ ǘƘŜ ƳǳƭǘƛǘƘǊŜŀŘŜŘ ǇǊƻƎǊŀƳƳƛƴƎΗ 5ǳŜ ǘƻ ŀ ǾŜǊȅ ƭƛƳƛǘŜŘ ǘƛƳŜΣ LΩƭƭ ōŜ ŦƻŎǳǎƛƴƎ ƻƴ ǘƘŜ ƘƛƎƘ-

level constructs only (I will only mention low-ƭŜǾŜƭ ǇǊƛƳƛǘƛǾŜǎ ƛƴ ǇŀǎǎƛƴƎύ ŀƴŘ ŜǾŜƴ ǘƘŜǊŜ LΩƭƭ ōŜ ƻƴƭȅ

able to cover the basics. You are therefore invited to read more about the OmniThreadLibrary on my

blog (www.thedelphigeek.com). Another good place to start is the OmniThreadLibrary home page,

otl.17slon.com, and especially the tutorials page (link on your screen) which links to important blog

articles. I will also assume that you know a little about multithreading programming and troubles

associated with that (such as data sharing and synchronization problems).

LΩƭƭ ǎǘŀǊǘ ǿƛǘƘ ŀ ŦŜǿ ǿƻǊŘǎ ŀōƻǳǘ ǘƘŜ hƳƴƛ¢ƘǊŜŀŘ[ƛōǊŀǊȅΦ Lǘ ǿŀǎ ŘŜǎƛƎƴŜŘ ǘƻ ōŜŎƻƳŜ ŀ ά±/[ŦƻǊ

ƳǳƭǘƛǘƘǊŜŀŘƛƴƎέ - a library that will make typical multithreading tasks really simple but still allow you

to dig deeper and mess with the multithreading code at the Win32 API level (and soon also on the

Win64 level). Initially the focus was on well-tested low-level components that made multithreaded

ǇǊƻƎǊŀƳƳƛƴƎ ƳǳŎƘ ǎƛƳǇƭŜǊ ŀǎ ǿƛǘƘ ǘƘŜ ¢¢ƘǊŜŀŘ όŀƭǘƘƻǳƎƘ L Ƴǳǎǘ ǎŀȅ ǘƘŀǘ ǘƘŜǊŜΩǎ ƴƻǘƘƛƴƎ ǿǊƻƴƎ ǿƛǘƘ

the TThread ς it is used in the OmniThreadLibrary internally to manage threads) and then (in release

2.0) the focus moved to high-level primitives (such as parallel forύ ǿƘƛŎƘ LΩƭƭ ōŜ ǘŀƭƪƛƴƎ ŀōƻǳǘ ǘƻŘŀȅΦ LŦ

L ƘŀŘ ǘƻ Ǉƻƛƴǘ ƻǳǘ ƻƴŜ ǎǇŜŎƛŦƛŎ ŦŜŀǘǳǊŜ ƻŦ ǘƘŜ hƳƴƛ¢ƘǊŜŀŘ[ƛōǊŀǊȅ LΩŘ ƳŜƴǘƛƻƴ ǘƘŀǘ ƛǘ ƛǎ ƴƻǘ ŦƻŎǳǎŜŘ ƻƴ

threads but on tasks. In other words, you tell the system what you want to run in a context of a

different thread and not how to run it. And that makes all the difference.

A few words about the project itself. It is released under the OpenBSD license, which is one of the

Ƴƻǎǘ άŦƻǊƎƛǾƛƴƎέ ƭƛŎŜƴǎŜǎ ŀƴŘ ŘƻŜǎƴΩǘ ŀŦŦŜŎǘ ȅƻǳǊ ŎƻƳƳŜǊŎƛŀƭ ŀǇǇƭƛŎŀǘƛƻƴǎ ƛƴ ŀƴȅ ǿŀȅΦ {ǘŀǊǘŜŘ ƛƴ Wǳƭȅ

2008, it lives in the Google Code repository and is actively developed with 1004 commits and 9

releases. Current release 2.2 supports Delphi XE2, but only on the Windows 32-bit target. Support for

Windows 64-ōƛǘ ƳƻŘŜ ƛǎ ŎƻƳƛƴƎ ōŜŦƻǊŜ ǘƘŜ ŜƴŘ ƻŦ ǘƘŜ ȅŜŀǊ ŀƴŘ ǘƘŜƴ LΩƭƭ ǇƻǊǘ ǘƘŜ ƭƛōǊŀǊȅ ς as much as

possible ς to the OS/X target. (At the moment I have no idea about what is possible to do on the iOS

platform.)

Installing OmniThreadLibrary is very simple. Firstly, download the latest release from the Google

Code or checkout the SVN repository. (Following the repository HEAD is typically fine ς I try very

much to not commit buggy code and all volatile development work is done in branches.) Secondly,

unpack the release to some folder and add this folder and its src subfolder to the project search path

or to the Win32 library path. Thirdly, add the OtlParallel unit to the uses ƭƛǎǘΦ ¸ƻǳΩǊŜ ǊŜŀdy to go!

OtlParallel contains all the high-ƭŜǾŜƭ ǎǘǳŦŦ ŘƛǎŎǳǎǎŜŘ ǘƻŘŀȅΦ {ƻƳŜǘƛƳŜǎ ȅƻǳΩƭƭ ŀƭǎƻ ƘŀǾŜ ǘƻ use other

hƳƴƛ¢ƘǊŜŀŘ[ƛōǊŀǊȅ ǳƴƛǘǎ ƭƛƪŜ hǘƭ/ƻƳƳƻƴ ƻǊ hǘƭ¢ŀǎƪ/ƻƴǘǊƻƭΦ LΩƭƭ ŎƻƳŜ ōŀŎƪ ǘƻ ǘƘŜƳ ƭŀǘŜǊ ƛƴ ǘƘŜ

presentation.

¢ƘŜ ǘƻǇƛŎ ƻŦ ǘƻŘŀȅΩǎ ǘŀƭƪ ŀǊŜ high-level OmniThreadLibrary constructs. In order of appearance, they

are:

1. Async. It allows you to start an independent background task (that is a piece of code running

in a separate thread) and forget about it. Background task can communicate with the owner

(typically the main thread) and owner can be notified when the background task completes

execution.

2. Future. Similar to Async, a future is an independent background task with a twist ς it returns

the result of the execution back to the owner. As the Async it supports the communication

and completion notification (actually all high-level primitives except the Fork/Join support

those two functions). In addition to that it also handles exceptions in the background task

and raises them in the owner.

3. Join. Allows you to start multiple background tasks and optionally wait for them to complete

execution. Join also provides good exception handling, but it is not simple enough to be

explained in a minute so please refer to my blog to learn more about it.

4. ParallelTask. A variant of the Join (it is actually implemented internally using the Join) starts

multiple copies of your code in multiple threads and optionally waits for them to complete

execution.

5. ForEach. A parallel variant of the for statement can iterate over integer ranges (just as the for

statement does) and over various types of containers (similar to the for in statement). It

ƻŦŦŜǊǎ Ƴŀƴȅ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ƻǇǘƛƻƴǎΣ ƻƴƭȅ ŀ ŦŜǿ ƻŦ ǿƘƛŎƘ LΩƭƭ ƳŜƴǘƛƻƴ ƛƴ ǘƻŘŀȅǎ ǇǊŜǎŜƴǘŀǘƛƻƴΦ

6. Pipeline. Runs processes that can be described as a data flow between multiple stages.

Exception handling is built-in but is again too complicated to be explained during this session

so ς again ς please refer to my blog.

7. CƻǊƪκWƻƛƴΦ ! ǇŀǊŀƭƭŜƭ ǾŀǊƛŀƴǘ ƻŦ ǘƘŜ άŘƛǾƛŘŜ ŀƴŘ ŎƻƴǉǳŜǊέ ǇǊƻƎǊŀƳƳƛƴƎ approach allows you

to parallelize tasks which can be expressed in subtasks. Think of recursion and QuickSort and

ȅƻǳΩƭƭ ƎŜǘ ǘƘŜ ǊƛƎƘǘ ƛŘŜŀΦ

All those primitives extensively use advanced Delphi features such as anonymous methods and are

therefore supported only in Delphi 2009 and newer.

[ŜǘΩǎ ǎǘŀǊǘ ǿƛǘƘ ǘƘŜ ǎƛƳǇƭŜǎǘ ŎƻƴǎǘǊǳŎǘΣ !ǎȅƴŎΦ ¢ƻ ǳǎŜ ƛǘΣ Ŏŀƭƭ tŀǊŀƭƭŜƭΦ!ǎȅƴŎ όȅƻǳΩƭƭ ƴƻǘƛŎŜ ǘƘŀǘ ŀƭƭ ƘƛƎƘ-

level constructs start with the Parallel prefix) and pass it some code. This can be a parameterless

procedure, mŜǘƘƻŘ ƻǊ ŀƴƻƴȅƳƻǳǎ ƳŜǘƘƻŘΦ ώLŦ ȅƻǳ ƭƻƻƪ ŀǘ ǘƘŜ ŎƻŘŜΣ ȅƻǳΩƭƭ ǎŜŜ ǘƘŀǘ ǘƘŜǊŜ ŀǊŜ ƻƴƭȅ ǘǿƻ

overloaded declarations of Async, both expecting an anonymous method as a parameter. Support for

procedures and methods comes automatically courtesy of the Delphi compiler.]

http://www.thedelphigeek.com/2011/04/simple-background-tasks-with.html

http://www.thedelphigeek.com/2011/07/life-after-21-async-redux.html

The diagram in the bottom right corner of the screen explains the execution model. When you call

Async, code is started in a new thread (indicated by the bold vertical line) and both main and

background thread continue execution. At some time, background task completes execution and

nothing special happens.

A note for advanced listeners ς ǿƘŜƴ L ǎŀƛŘ άƛǎ ǎǘŀǊǘŜŘ ƛƴ ŀ ƴŜǿ ǘƘǊŜŀŘέΣ L ƭƛŜŘ ŀ ƭƛǘǘƭŜΦ hYΣ L ƭƛŜŘ ŀ ƭƻǘΦ

All high-level primitives manage a thread pool. Background thread is always taken from a thread pool

and only if there is no thread waiting for the work, a new thread is created.

http://www.thedelphigeek.com/2011/09/life-after-21-parallel-data-production.html

[ŜǘΩǎ ǎǿƛǘŎƘ ǘƻ ǘƘŜ ŎƻŘŜ ƴƻǿΦ

I have a simple demo application prepared which will help me with the presentation. As I have little

ǘƛƳŜ ŀƴŘ ƭƻǘǎ ǘƻ ǎƘƻǿΣ LΩǾŜ ǇǊŜǇŀǊŜŘ ŀƭƭ όǿŜƭƭΣ ŀƭƳƻǎǘ ŀƭƭύ Ŏode in advance.

¢ƻ ŘŜƳƻƴǎǘǊŀǘŜ ǘƘŜ !ǎȅƴŎΣ LΩƳ ǳǎƛƴƎ ƛǘ ǘƻ ŦŜǘŎƘ ŀ ǇŀƎŜ ŦǊƻƳ ǘƘŜ ƛƴǘŜǊƴŜǘ ǿƛǘƘ ŀ ǎƛƳǇƭŜ ²ƛƴLƴŜǘ

ǎȅƴŎƘǊƻƴƻǳǎ ŎŀƭƭΦ [ŜǘΩǎ ŦƛǊǎǘ ǎŜŜ ǘƘŜ ǎȅƴŎƘǊƻƴƻǳǎ ǾŜǊǎƛƻƴΥ

procedure TfrmMultithreadingMadeSimple.btnSyncGETClick(Sender: TObject);
var
 page: string;
 time: int64;
begin
 time := DSiTimeGetTime64;
 HttpGet('17slon.com', 80, '/gp/biblio/articlesall.htm', page, '');
 lbLogAsync.Items.Add(Format('Sync GET: %d ms; page length = %d',
 [DSiElapsedTime64(time), Length(page)]));
end;

CƛǊǎǘ LΩƳ Ǝetting the current time (using the timeGetTime multimedia function which offers a

millisecond accuracy), then I call a helper function HttpGet (included in the MMSHelpers unit) and at

the end I show the total time used for the call and the length of the returned data (just to check that

anything was returned at all).

[ŜǘΩǎ Ǌǳƴ ǘƘŜ ŘŜƳƻ ƴƻǿΦ

!ǎ ȅƻǳ Ŏŀƴ ǎŜŜΣ ǘƘŜǊŜΩǎ ǎƻƳŜ ŀŎǘƛƻƴ ŀƭǊŜŀŘȅ ƎƻƛƴƎ ƻƴΦ ¢ƘŜ ǇǊƻƎǊŜǎǎ ōŀǊ ŀǘ ǘƘŜ ōƻǘǘƻƳ ƛǎ ǳǇŘŀǘŜŘ ŦƻǳǊ

times a second from the timer. This will show us very clearly when the main thread is execution long

ƻǇŜǊŀǘƛƻƴ όǘƘŜ ǇǊƻƎǊŜǎǎ ōŀǊ ǿƛƭƭ ǎǘƻǇύΦ LŦΣ ŦƻǊ ŜȄŀƳǇƭŜΣ L ƴƻǿ ŎƭƛŎƪ ƻƴ ǘƘŜ ά{ȅƴŎ D9¢έ ōǳǘǘƻƴ ǘƻ

ŜȄŜŎǳǘŜ ǘƘŜ ŎƻŘŜ ǿŜ ǿŜǊŜ Ƨǳǎǘ ŜȄŀƳƛƴƛƴƎ Χ

Χ ǘƘŜ ŎƻŘŜ ǿƻǳƭŘ ǎǘƻǇ ŦƻǊ ŀōƻǳǘ ǘǿƻ ǎŜŎƻƴŘǎ ǿƘƛƭŜ ǘƘŜ ǿŜō ǇŀƎŜ ƛǎ ōŜƛƴƎ ǊŜǘǊƛŜǾŜŘΦ

Yƻǳ ŘƻƴΩǘ ƘŀǾŜ ǘƻ Řƻ ƳǳŎƘ ǘƻ ŎƻƴǾŜǊǘ ǘƘƛǎ ŎƻŘŜ ƛƴǘƻ ŀ ōŀŎƪƎǊƻǳƴŘ ǘŀǎƪΦ

procedure TfrmMultithreadingMadeSimple.btnAsyncGETClick(Sender: TObject);
var
 time: int64;
begin
 time := DSiTimeGetTime64;
 Parallel.Async(
 procedure
 var
 page: string;
 begin
 HttpGet('17slon.com', 80, '/gp/biblio/articlesall.htm', page, '');
 end);
 lbLogAsync.Items.Add(Format('Async: %d ms', [DSiElapsedTime64(time)]))
end;

The template code is still the same ς store the time, run some code, display the time difference ς but

ǘƘƛǎ ǘƛƳŜ ǿŜ ŀǊŜ ǳǎƛƴƎ tŀǊŀƭƭŜƭΦ!ǎȅƴŎ ǘƻ ǎǘŀǊǘ ǘƘŜ ƻǇŜǊŀǘƛƻƴ ƛƴ ōŀŎƪƎǊƻǳƴŘΦ LΩǾŜ ǿǊƛǘǘŜƴ ŀ ǎƛƳǇƭŜ

parameterless anonymous method that wraps the HttpGet call and ς for now ς ignores the returned

page content.

LŦ L ƴƻǿ ŎƭƛŎƪ ƻƴ ǘƘŜ ά!ǎȅƴŎ D9¢έ ōǳǘǘƻƴΣ L Ŏŀƴ ǎŜŜ ǘƘŀǘ !ǎȅƴŎ Ŏŀƭƭ ƛǘǎŜƭŦ ƻƴƭȅ ƴŜŜŘŜŘ но ƳƛƭƭƛǎŜŎƻƴŘǎΦ

The actual HttpGet operation is executing in the background. As the result of HttpGet is

(momentaǊƛƭȅύ ǘƘǊƻǿƴ ŀǿŀȅΣ ǘƘŜǊŜΩǎ ƻƴƭȅ ƻƴŜ ǿŀȅ ǘƻ ǇǊƻǾŜ Ƴȅ ǿƻǊŘǎ ς in the debugger.

L ǿƛƭƭ Ǉǳǘ ŀ ōǊŜŀƪǇƻƛƴǘ ƻƴ ǘƘŜ IǘǘǇDŜǘ Ŏŀƭƭ Χ

Χ ŀƴŘ ŎƭƛŎƪ ǘƘŜ ōǳǘǘƻƴ ŀƎŀƛƴΦ

You can see in the Thread Status window that the code is really running in a background thread.

So how can we get the result back to the main thread? There are few different ways, one of which is

ǘƘŜ ǳǎŜ ƻŦ ƛƴǘŜǊƴŀƭ ψLƴǾƻƪŜψ ƳŜŎƘŀƴƛǎƳΣ ǿƘƛŎƘ ǿƻǊƪǎ ǾŜǊȅ ǎƛƳƛƭŀǊƭȅ ǘƻ ǘƘŜ ¢¢ƘǊŜŀŘΨǎ vǳŜǳŜ ƳŜǘƘƻŘΦ

¢ƻ ǳǎŜ ƛǘΣ ǿŜΩƭƭ ƘŀǾŜ ǘƻ ǿǊƛǘŜ ŀ ŘƛŦŦŜǊŜƴǘ ŀƴƻƴȅƳƻǳǎ ƳŜǘƘƻŘ ŀŎŎŜpting the low-level _IOmniTask_

interface and add OtlTask to the _uses_ list.

procedure TfrmMultithreadingMadeSimple.btnAsyncGETResultClick(Sender: TObject);
var
 time: int64;
begin
 time := DSiTimeGetTime64;
 Parallel.Async(
 procedure (const task: IOmniTask)
 var
 page: string;
 time: int64;
 begin
 time := DSiTimeGetTime64;
 HttpGet('17slon.com', 80, '/gp/biblio/articlesall.htm', page, '');
 time := DSiElapsedTime64(time);
 task.Invoke(
 procedure
 begin
 lbLogAsync.Items.Add(Format('Async GET: %d ms; page length = %d',
 [time, Length(page)]))
 end);
 end);
 lbLogAsync.Items.Add(Format('Async: %d ms', [DSiElapsedTime64(time)]));
end;

This interface represents a single task and you can use it to communicate with the main thread or to

ƛƴǾƻƪŜ ǎƻƳŜ ŎƻŘŜ ƛƴ ǘƘŜ Ƴŀƛƴ ǘƘǊŜŀŘΣ ǿƘƛŎƘ ƛǎ ǘƘŜ ŀǇǇǊƻŀŎƘ LΩƳ ǳǎƛƴƎ ƘŜǊŜΦ

When HttpGet returns, the code will use task.Invoke to execute some code in the main thread and

this code will update the user interface.

As you can see, we are now timing two operations ς the Async call and the execution time of the

background task.

[ŜǘΩǎ ǎŜŜ Ƙƻǿ ƛǘ ǿƻǊƪǎ Χ

Async only needed 2 milliseconds (because the thread executing the task was already ready and

ǿŀƛǘƛƴƎ ŦƻǊ ǿƻǊƪ ƛƴ ǘƘŜ ǘƘǊŜŀŘ Ǉƻƻƭύ ōǳǘ ǘƘŜ ōŀŎƪƎǊƻǳƴŘ ǘŀǎƪ ƴŜŜŘŜŘ άƴƻǊƳŀƭέ ǎŜŎƻƴŘ ŀƴŘ ŀ ƘŀƭŦΦ !ǎ

you can see yourself, the GUI was responsive all the time (the green bar is being constantly updated).

9ƴƻǳƎƘ ƻŦ ǘƘŜ !ǎȅƴŎΣ ƭŜǘΩǎ ŎƻƴǘƛƴǳŜ ǿƛǘƘ ǘƘŜ Cǳture.

A future is a background calculation that returns a result. To create the task, call Parallel.Future

(providing the type returned from the calculation). To get the result of the calculation, call the .Value

method on the interface returned from the Parallel.Future call.

http://www.thedelphigeek.com/2010/06/future-of-delphi.html

http://www.thedelphigeek.com/2011/07/life-after-21-exceptions-in.html

When you call the Parallel.Future, a background task is started immediately. The task will continue

ǿƛǘƘ ƛǘΩǎ όǇƻǎǎƛōƭȅ ƭƻƴƎύ ŜȄŜŎǳǘƛƻƴ ŀƴŘ ǘƘŜ Ƴŀƛƴ ǘƘǊŜŀŘ Ŏŀƴ Řƻ ǎƻƳŜ ƻǘƘŜǊ ǿƻǊƪΦ ²ƘŜƴ ȅƻǳ ƴŜŜŘ ǘƘŜ

result of the background calculation, call the .Value method, which will return the result immediately

if it is ready or which will wait on the background code to complete its work if necessary.

¢ƻ ŘŜƳƻƴǎǘǊŀǘŜ ǘƘŜ ǳǎŜ ƻŦ ǘƘŜ CǳǘǳǊŜ ŎƻƴǎǘǊǳŎǘΣ LΩǾŜ ǊŜǿǊƛǘǘŜƴ ǘƘŜ IǘǘǇDŜǘ demo.

procedure TfrmMultithreadingMadeSimple.btnFutureGETClick(Sender: TObject);
var
 getFuture: IOmniFuture<string>;
 page: string;
 time: int64;
begin
 time := DSiTimeGetTime64;
 getFuture := Parallel.Future<string>(FutureGet);
 lbLogFuture.Items.Add(Format('Future: %d ms', [DSiElapsedTime64(time)]));
 // do some other processing
 Sleep(1000);
 page := getFuture.Value;
 lbLogFuture.Items.Add(Format('Future GET: %d ms; page length = %d',
 [DSiElapsedTime64(time), Length(page)]));
end;

The demo calls Parallel.Future of string with the FutureGet parameter. Then it logs the elapsed time

for the .Future call and does some other processing (simulated here by the Sleep function). At the

end it retrieves the result of the FutureGet function.

FutureGet is just a simple function returning string ς the contents of the retrieved page.

function TfrmMultithreadingMadeSimple.FutureGET: string;
begin
 HttpGet('17slon.com', 80, '/gp/biblio/articlesall.htm', Result, '');
end;

[ŜǘΩǎ ǎŜŜ Ƙƻǿ it works in practice.

The .Future call needed only 17 ms but the total execution time is still about a second and a half.

Main thread spent one second of that in the Sleep call and the rest in the .Value where it waited for

the future to return a result.

IŦ ȅƻǳ ŘƻƴΩǘ ǿŀƴǘ ǘƻ ōƭƻŎƪ ƛƴ ǘƘŜ Φ±ŀƭǳŜ ŎŀƭƭΣ ȅƻǳ ƘŀǾŜ ǘƘǊŜŜ ƻǇǘƛƻƴǎΦ hƴŜ ƛǎ ǘƻ ƻŎŎŀǎƛƻƴŀƭƭȅ Ŏŀƭƭ ǘƘŜ

IsDone function, another is to use TryValue instead of Value and the third one is to set up a

termination handler.

procedure TfrmMultithreadingMadeSimple.btnFutureGETTerminateClick(Sender:
 TObject);
begin
 FGetFuture := Parallel.Future<string>(FutureGet,
 Parallel.TaskConfig.OnTerminated(FutureDone));
end;

By providing second parameter ς ŀ άǘŀǎƪ ŎƻƴŦƛƎǳǊŀǘƛƻƴέ ς to the Parallel.Future call we can set up a

parameterless method/procedure/anonymous code that will be executed when the background

calculation is completed.

In this case, result of the Future call must be stored in a form field (or another global instance) so

that it is not destroyed when the button handler exits.

procedure TfrmMultithreadingMadeSimple.FutureDone;
var
 page: string;
 time: int64;
begin
 time := DSiTimeGetTime64;
 page := FGetFuture.Value;
 FGetFuture := nil;
 lbLogFuture.Items.Add(Format('Future Done: %d ms; page length = %d',
 [DSiElapsedTime(time), Length(page)]));
end;

Lƴ ǘƘŜ CǳǘǳǊŜ5ƻƴŜ ǿŜ Ŏŀƭƭ Φ±ŀƭǳŜ ǘƻ ǊŜǘǊƛŜǾŜ ǘƘŜ ǊŜǎǳƭǘ ŀƴŘ ŀǎǎƛƎƴ άƴƛƭέ ǘƻ ǘƘŜ CDŜǘCǳǘǳǊŜ ŦƛŜƭŘ ǘƻ ŦǊŜŜ

the future interface.

In this case the GUI is not blocking and result is retrieved immediately. Of course, we have to wait a

second and a half for FutureDone to be called at all.

[ŜǘΩǎ ŎƻƴǘƛƴǳŜ ǿƛǘƘ WƻƛƴΦ

Join takes multiple code fragments (that is methods, procedures or anonymous methods) and

executes each in its own thread. It can optionally wait on all tasks to complete execution or it can

continue immediately.

http://www.thedelphigeek.com/2011/07/life-after-21-paralleljoins-new-clothes.html

A very simple demo uses Join to execute two methods that spend all their time sleeping ς one for 2

and another for 3 seconds.

procedure TfrmMultithreadingMadeSimple.btnJoinClick(Sender: TObject);
var
 time: int64;
begin
 time := DSiTimeGetTime64;
 Parallel.Join(Delay(2000), Delay(3000)).Execute;
 lbLogJoin.Items.Add(Format('Join: %d ms', [DSiElapsedTime64(time)]));
end;

The total execution time is, of course, three seconds.

!ǎ ǿŜ ŀǊŜ ƴƻǘ ǳǎƛƴƎ ǘƘŜ ƴƻƴōƭƻŎƪƛƴƎ ǾŜǊǎƛƻƴ ƻŦ WƻƛƴΣ ǘƘŜ D¦L Ƙŀǎ ǎǘƻǇǇŜŘ ŦƻǊ ǘƘǊŜŜ ǎŜŎƻƴŘǎ ǘƻƻΦ LΩƭƭ

show you how to use a non-waiting version in a moment.

Just for fun, the Delay is implemented as a function that returns an anonymous method (which is

then executed in the background task).

function TfrmMultithreadingMadeSimple.Delay(timeout_ms: integer): TProc;
begin
 Result :=
 procedure
 begin
 Sleep(timeout_ms);
 end;
end;

9ƴƻǳƎƘ ƻŦ ǘƘŀǘΣ ƭŜǘΩǎ ƳƻǾŜ ǘƻ tŀǊŀƭƭŜƭ¢ŀǎƪΦ

