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multithreading but a multithreading in its simplest forrat least if we limit ourselves to the Delphi
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level constructs only (I will only mention léwS @St LINAYAGA@Sa&a Ay LI aaiy3ao |
able to cover the basics. You are therefore invited to read more about the OmniThreadLibrary on my

blog (www.thedelphigeek.com). Another good place to start is the OmniThreadLibrary home page,
otl.17slon.com, and especially thatorials page (link on youscreen) which links to important blog

articles. I will also assume that you know a little about multithreading programming and troubles

associated with that (such as data sharing and synchronization problems).



OmniThreadLibrary is ...

* ... VCL for multithreading
— Simplifies programming tasks
— Componentizes solutions

— Allows access to the bare metal

* ...trying to make multithreading possible for
mere mortals

* ...providing well-tested components packed
in reusable classes with high-level parallel
programming support
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Y dzf (0 A (i K-Bbraiy that ®ikk make typical multithreading tasks really simple but still allow you

to dig deeper and mess with the multithreading code at the Win32 API level (and soon ale® on t

Win64 level). Initially the focus was on wigkted lowlevel components that made multithreaded
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the TThread; it is used in the OmniThreadLibrary intellgado manage threads) and then (in release

2.0) the focus moved to higlevel primitives (such gsarallelfov g KA OK LQff o6S G
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threads but ortasks In other words, you tell the systewhat you want to run in a context of a

different thread and nohow to run it. And that makes all the difference.
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Project Status

OpenBSD license

Actively developed
— 1004 commits [code.google.com/p/omnithreadlibrary/]

Actively used
— 2.0: 2710 downloads [in 7 months]
— 2.1: 1187 downloads [in 3 months]

— 2.2: current release, XE2 support

Delphi 2007 and above; currently Win32 only

A few words about the project itself. It is released under the OpenBSD licehisd, i one of the
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2008, it lives in the Google Code repository and is actively developed with 1004 commits and 9

releases. Current release 2.2 supporeddhi XE2, but only on the Windows-BR target. Support for
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possibleg to the OS/X target. (At the moment | have no idea about what is possible to hed®S

platform.)



Installation

Download last installation from the Google
Code or checkout the SVN repository

— code.google.com/p/omnithreadlibrary/

Add installation folder and its src subfolder to
the project search path or Win32 library path

Add the Ot/Parallel unitto the uses list
That’s all folks!

y 4

Installing OmniThreadLibrary is very simple. Firstly, download the latest release from the Google
Code or checkout the SVN repository. (Following the repository HEAD is typically timeery

much to not commit buggy code and @olatile development work is done in branches.) Secondly,
unpack the release to some folder and add this folder andritssubfolder to the project search path

or to the Win32 library path. Thirdly, add ti@IParallelunit to theusest A & i @ dy2odg@ NBE NI I

OtlParallel contains allthe highS @St a (i dzF¥ RA&O0dzaA&a SR G 2ukebterd { 2 VY S A
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presentation.



High level multithreading

* ASyNnC - start background task and continue

* Future - start background calculation and retrieve the result
* JOin - start multiple background tasks and wait
ParallelTask - start multiple copies of one task and wait
ForEach - parallel iteration over many different containers
e Pipeline —run a multistage process

* Fork/Join - divide and conquer, in parallel

* Delphi 2009 required

G2 LA O 2 Thighilevét OreniTkreadLIibriary comstiBts. In order of appearance, they
are:

1. Async. It allows you to start an independent background task (that is a piece of code running
in a separate thread) and forget about it. Background task can communicate with ther own
(typically the main thread) and owner can be notified when the background task completes
execution.

2. Future. Similar to Async, a future is an independent background task with & titvisturns
the result of the execution back to the owner. As the Asyrsupports the communication
and completion notification (actually all higiwvel primitives except the Fork/Join support
those two functions). In addition to that it also handles exceptions in the background task
and raises them in the owner.

3. Join. Abws you to start multiple background tasks and optionally wait for them to complete
execution. Join also provides good exception handling, but it is not simple enough to be
explained in a minute so please refer to my blog to learn more about it.

4. Parallel@sk. A variant of the Join (it is actually implemented internally using the Join) starts
multiple copies of your code in multiple threads and optionally waits for them to complete
execution.



5. ForEach. A parallel variant of ther statement can iterate oveinteger ranges (just as tHer
statement does) and over various types of containers (similar tddhin statement). It
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6. Pipeline. Runs processes that can bectdiéed as a data flow between multiple stages.
Exception handling is buiih but is again too complicated to be explained during this session
so¢ againg please refer to my blog.
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to parallelize tasks which can be expressed in subtasks. Think of recursion and QuickSort and
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All those primitives extensively use advanced Delphi features such as anonymous methods and are
therefore supporteconly in Delphi 2009 and newer.



Async
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level constructs start with the Parallel prefix) and pass it some code. This can be a parameterless
procedure, 5 1 K2R 2NJ I y2yeéY2dza YSUGUK2R® LT &2dz t221 I
overloaded declarations of Async, both expecting an anonymous method as a parameter. Support for
procedures and methods comes automatically courtesy of the Delphi éemjpi

http:/www.thedelphigeek.com/2011/04/simplebackgrounataskswith.html
http:/www.thedelphigeek.com/2011/07/lifeafter-21-asyneredux.html

The diagram in the bottom right corner of the screen explains the execution model. When you call
Asyng¢ code is started in a new thread (indicated by the bold vertical line) and both main and
background thread continue execution. At some time, background task completes execution and
nothing special happens.

A note for advanced listenersg KSy L G3INUIRSRY A&y &8 yS¢ GKNBFRéS L )
All highlevel primitives manage a thread pool. Background thread is always taken from a thread pool
and only if there is no thread waiting for the work, a new thread is created.

http://www.thedel phigeek.com/2011/09/lifeafter-21-paralletdata-production.html
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| have a simple demo application prepared which will help me with the presentation. As | have little
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procedure TfrmMultithreadingMadeSimple.btnSyncGETClick(Sender: TObject);
var
page:string;
time: int64;
begin
time := DSiTimeGetTime64;
HttpGet('17slon.com’, 80, '/gp/biblio/articlesall.htm’, page, ");
IbLogAsync.ltems.Add(Format('Sync GET: %d ms; page length = %d',
[DSiElapsedTime64(time), Length(page)]));
end;

C A N& étting tee\eurrant time (using the timeGetTime multimedia function which offers a
millisecond accuracy), then | call a helper function HttpGet (included in the MMSHelpers unit) and at
the end | show the total time used for the call and the length of tharreed data (just to check that
anything was returned at all).
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times a second from the timer. This will show us very clearly whemrain thread is execution long
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procedure TfrmMultithreadingMadeSimple.btnAsyncGETClick(Sender: TObject);
var
time: int64;
begin
time := DSiTimeGetTime64;
Parallel.Async(
procedure
var
page:string;
begin
HttpGet('17slon.com’, 80, ‘/gp/biblio/articlesall.htm’, page, ");
end);
IbLogAsync.ltems.Add(Format('Async: %d ms', [DSiElapsedTime64(time)]))
end;

The template code is still the samestore the time, run some code, display the time differeqdaut

GKA& GAYS 46S INB dzaAy3 tINIEfStdl a2dy0 G2 adl NI
parameterless anonymous method that wraps the HttpGat andg for now ¢ ignores the returned

page content.
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The actual HttpGet operation is executing in the background. As the result of HttpGet is
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You can see in the Thread Status window that the code is really running in a background thread.

So howcan we get the result back to the main thread? There are few different ways, one of which is

OF v
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interface and add OtlTask to the _uses__ list.

procedure TfrmMultithreadingMadeSimple.btnAsyncGETResultClick(Sender: TObject);
var
time: int64;
begin
time := DSiTimeGetTime64;
Parallel. Async(
procedure (const taskOmniTask)
var
page: string;
time: int64;
begin
time := DSiTimeGetTime64;
HttpGet('17slon.com’, 80, ‘/gp/biblio/articlesall.htm’, page, ");
time := DSiElapsedTime64(time);
task.Invoke(
procedure
begin
IbLogAsync.ltems.Add(Format('Async GET: %d ms; page length = %d',
[time, Length(page)]))
end);
end);
IbLogAsync.ltems.Add(Format('Async: %d ms', [DSiElapsedTime64(time)]));
end:;

This interface representssingle task and you can use it to communicate with the main thread or to
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When HttpGet returns, the code will use task.Invoke to execute some code in the main thread and
this code vill update the user interface.

As you can see, we are how timing two operatigrise Async call and the execution time of the
background task.
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Async only needed 2 milliseconds (because the thread executing the task was alrebdgnda
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you can see yourself, the GUI was responsive all the time (the green bar is being constantly updated).

9y 2dzaK 2F G(KS 1 aeyOmref S(1Qa O2yliAydzs$S 6AGK GKS Cdz



- Future

* Future:=Parallel.Future<type>.
(calculation);

* Query Future.Value;

Future
(code)

\

code

Value

Result|
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A future is a background calculation that returns a result. To create the task, call Parallel.Future
(providing the type returned from the calculation). To get the result of the calculation, call the .Value
method on the interface returned from the Parallel.Future call.

http://www.thedelphigeek.com/2010/06/futureof-delphi.html
http://www.thedelphigeek.@m/2011/07/life-after-21-exceptionsin.html

When you call the Parallel.Future, a background task is started immediately. The task will continue
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result of thebackground calculation, call the .Value method, which will return the result immediately

if it is ready or which will wait on the background code to complete its work if necessary.
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procedure TfrmMultithreadingMadeSimple.btnFutureGETClick(Sender: TObject);
var
getFuture: IOmniFuture<string>;
page: string;
time: int64;
begin
time := DSiTimeGetTime64;
getFuture := Parallel.Future<string>(FutureGet);
IbLogFuture.ltems.Add(Format('Future: %d ms', [DSiElapsedTime64(time)]));
/I do some other processing
Sleep(1000);
page := getFuture.Value;
IbLogFuture.ltems.Add(Format('Future GET: %d ms; page length = %d',
[DSiElapsedTime64(time), Length(pdpe
end:;

The demo calls Parallel.Future of string with the FutureGet parameter. Then it logs the elapsed time
for the .Future call and does some other processing (simulated here by the Sleep function). At the
end it retrieves the result of the FutureGeinction.

FutureGet is just a simple function returning strinthe contents of the retrieved page.

function TfrmMultithreadingMadeSimple.FutureGET: string;
begin

HttpGet('17slon.com’, 80, ‘/gp/biblio/articlesall.htm’, Result, ");
end;
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The .Future call needed only 17 ms but the total execution time is still about a second and a half.
Main thread spent one second of that in the Sleep call and the rest in the .Value where it waited for
the future to return a result.

¥ &2dz R2y Qi 4l yid (G2 o0ft201 Ay (GKS o+l fdzS OlIffzx &:
IsDone function, another is to use TryValue instead of Value and the third one is to set up a
termination handler.

procedureTfrmMultithreadingMadeSimple.btnFutureGET TerminateClick(Sender:
TObject);
begin
FGetFuture := Parallel.Future<string>(FutureGet,
Parallel. TaskConfig.OnTerminated(FutureDone));
end,;

By providing second parametel a G a1 O 2ty théPardidblIFuiukezall we can set up a
parameterless method/procedure/anonymous code that will be executed when the background
calculation is completed.

In this case, result of the Future call must be stored in a form field (or another global instance) so
that it is not destroyed when the button handler exits.



procedure TfrmMultithreadingMadeSimple.FutureDone,;
var
page: string;
time: int64;
begin
time := DSiTimeGetTime64,
page = FGetFuture.Value;
FGetFuture := nil;
IbLogFuture.ltems.Add(Formét(iture Done: %d ms; page length = %d',
[DSiElapsedTime(time), Length(page)]));
end;
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the future interface.

In this case the GUI is not blocking amdult is retrieved immediately. Of course, we have to wait a
second and a half for FutureDone to be called at all.
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- Join

 Parallel.Join([task1l, task2,
task3, .. taskN]).Execute

Join{codel,
code2, code3)

\

codel

l code2

code3

r————

Join takes multiple code fragments (that is methods, procedures or anonymous methods) and
executes each instown thread. It can optionally wait on all tasks to complete execution or it can
continue immediately.

http://www.thedelphigeek.com/2011/07/lifeafter-21-paralleljoinsnew-clothes.html

A very simple demo uses Join to execute two methods that spetitealtime sleeping; one for 2
and another for 3 seconds.

procedure TfrmMultithreadingMadeSimple.btnJoinClick(Sender: TObject);
var
time: int64;
begin
time := DSiTimeGetTime64;
Parallel.Join(Delay(2000), Delay(3000)).Execute;
IbLogJoin.ltems.AdB6rmat(‘Join: %d ms', [DSiElapsedTime64(time)]));
end;

The total execution time is, of course, three seconds.

l'a ¢S INB y20 dzaAy3a (GKS y2yot201Ay3 OSNBEAZY 2F V
show you how to use a newaiting version ira moment.

Just for fun, the Delay is implemented as a function that returns an anonymous method (which is
then executed in the background task).



function TfrmMultithreadingMadeSimple.Delay(timeout_ms: integer): TProc;
begin
Result :=
procedure
begin
Sleep(timeout_ms);

end;

end;
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