MULTITHREADING MADE SIMPLE

Primoz GabrijelCic
primoz@gabrijelcic.org
www.thedelphigeek.com
otl.17slon.com/tutorials.htm

I Stft2s QA N2 E@RE6 & L Qf £ { kdnd notjustamzi YdzZt GAGKNBI
multithreading but a multithreading in its simplest forrat least if we limit ourselves to the Delphi

fry3adza 3Se LQff 0S5 LINEpgdeytinhopéh siukeSibraryviyattriektol@mingR [A 6 NI
001 Fdzy (2 GKS Ydzf GAGKNBIRSR LINRPANI YYAYIH 5dz8
level constructs only (I will only mention léwS @St LINAYAGA@Sa&a Ay LI aaiy3ao |
able to cover the basics. You are therefore invited to read more about the OmniThreadLibrary on my

blog (www.thedelphigeek.com). Another good place to start is the OmniThreadLibrary home page,
otl.17slon.com, and especially thatorials page (link on youscreen) which links to important blog

articles. I will also assume that you know a little about multithreading programming and troubles

associated with that (such as data sharing and synchronization problems).

OmniThreadLibrary is ...

* ... VCL for multithreading
— Simplifies programming tasks
— Componentizes solutions

— Allows access to the bare metal

* ...trying to make multithreading possible for
mere mortals

* ...providing well-tested components packed
in reusable classes with high-level parallel
programming support

N

LQff A0GFNI 6AGK YIWARKANSEG RNRD NI dNBai (LKS i & RSaAIy !
Y dzf (0 A (i K-Bbraiy that ®ikk make typical multithreading tasks really simple but still allow you

to dig deeper and mess with the multithreading code at the Win32 API level (and soon ale® on t

Win64 level). Initially the focus was on wigkted lowlevel components that made multithreaded

LINEANF YYAY3I YdzOK AAYLE SN A 6AGK GKS ¢¢KNBFR 6Ff
the TThread; it is used in the OmniThreadLibrary intellgado manage threads) and then (in release

2.0) the focus moved to higlevel primitives (such gsarallelfov g KA OK LQff o6S G
L KIR (2 LRAYyG 2dzi 2yS ALISOAFAO FSFH{ddzaNBE 2F (GKS
threads but ortasks In other words, you tell the systewhat you want to run in a context of a

different thread and nohow to run it. And that makes all the difference.

Ay
h

Project Status

OpenBSD license

Actively developed
— 1004 commits [code.google.com/p/omnithreadlibrary/]

Actively used
— 2.0: 2710 downloads [in 7 months]
— 2.1: 1187 downloads [in 3 months]

— 2.2: current release, XE2 support

Delphi 2007 and above; currently Win32 only

A few words about the project itself. It is released under the OpenBSD licehisd, i one of the

Y2ald aF2NEBAGAYy3I¢E fAO0SyaSa yR R2SayQi FFFSO0G e2d
2008, it lives in the Google Code repository and is actively developed with 1004 commits and 9

releases. Current release 2.2 supporeddhi XE2, but only on the Windows-BR target. Support for

Windows 640 A i Y2 RS A& O2YAy3d o0ST2NB (KS fssRuchés G KS @
possibleg to the OS/X target. (At the moment | have no idea about what is possible to hed®S

platform.)

Installation

Download last installation from the Google
Code or checkout the SVN repository

— code.google.com/p/omnithreadlibrary/

Add installation folder and its src subfolder to
the project search path or Win32 library path

Add the Ot/Parallel unitto the uses list
That’s all folks!

y 4

Installing OmniThreadLibrary is very simple. Firstly, download the latest release from the Google
Code or checkout the SVN repository. (Following the repository HEAD is typically timeery

much to not commit buggy code and @olatile development work is done in branches.) Secondly,
unpack the release to some folder and add this folder andritssubfolder to the project search path

or to the Win32 library path. Thirdly, add ti@IParallelunit to theusest A & i @ dy2odg@ NBE NI I

OtlParallel contains allthe highS @St a (i dzF¥ RA&O0dzaA&a SR G 2ukebterd { 2 VY S A
hYYACKNBFR[AONI NBE dzyAda fAfj Gt/ 2YY2y 2N hif ¢l a
presentation.

High level multithreading

* ASyNnC - start background task and continue

* Future - start background calculation and retrieve the result
* JOin - start multiple background tasks and wait
ParallelTask - start multiple copies of one task and wait
ForEach - parallel iteration over many different containers
e Pipeline —run a multistage process

* Fork/Join - divide and conquer, in parallel

* Delphi 2009 required

G2 LA O 2 Thighilevét OreniTkreadLIibriary comstiBts. In order of appearance, they
are:

1. Async. It allows you to start an independent background task (that is a piece of code running
in a separate thread) and forget about it. Background task can communicate with ther own
(typically the main thread) and owner can be notified when the background task completes
execution.

2. Future. Similar to Async, a future is an independent background task with & titvisturns
the result of the execution back to the owner. As the Asyrsupports the communication
and completion notification (actually all higiwvel primitives except the Fork/Join support
those two functions). In addition to that it also handles exceptions in the background task
and raises them in the owner.

3. Join. Abws you to start multiple background tasks and optionally wait for them to complete
execution. Join also provides good exception handling, but it is not simple enough to be
explained in a minute so please refer to my blog to learn more about it.

4. Parallel@sk. A variant of the Join (it is actually implemented internally using the Join) starts
multiple copies of your code in multiple threads and optionally waits for them to complete
execution.

5. ForEach. A parallel variant of ther statement can iterate oveinteger ranges (just as tHer
statement does) and over various types of containers (similar tddhin statement). It
2TFSNRBR Ylyeée O2yFAIAdzNI A2y 2LiA2yas 2yfteé | FSg«

6. Pipeline. Runs processes that can bectdiéed as a data flow between multiple stages.
Exception handling is buiih but is again too complicated to be explained during this session
so¢ againg please refer to my blog.

7. C2NJl KW2AYy ® | LI NI ffSt @I NRLI Yy Gap@ohchalgwsyos RA A RS
to parallelize tasks which can be expressed in subtasks. Think of recursion and QuickSort and
g2dzQf t 3ISG GKS NARIKG ARSIH®

All those primitives extensively use advanced Delphi features such as anonymous methods and are
therefore supporteconly in Delphi 2009 and newer.

Async

7
A

~ e+ Parallel.Async(code)

y

Async I &
{code)

A

code

[SGQa adF NI gAGK GKS aAYLX Sad O2yadNHOG: -!' agyOo
level constructs start with the Parallel prefix) and pass it some code. This can be a parameterless
procedure, 5 1 K2R 2NJ I y2yeéY2dza YSUGUK2R® LT &2dz t221 I
overloaded declarations of Async, both expecting an anonymous method as a parameter. Support for
procedures and methods comes automatically courtesy of the Delphi éemjpi

http:/www.thedelphigeek.com/2011/04/simplebackgrounataskswith.html
http:/www.thedelphigeek.com/2011/07/lifeafter-21-asyneredux.html

The diagram in the bottom right corner of the screen explains the execution model. When you call
Asyng¢ code is started in a new thread (indicated by the bold vertical line) and both main and
background thread continue execution. At some time, background task completes execution and
nothing special happens.

A note for advanced listenersg KSy L G3INUIRSRY A&y &8 yS¢ GKNBFRéS L)
All highlevel primitives manage a thread pool. Background thread is always taken from a thread pool
and only if there is no thread waiting for the work, a new thread is created.

http://www.thedel phigeek.com/2011/09/lifeafter-21-paralletdata-production.html
[$0Qa 46AGOK (G2 (GKS O2RS y260

| have a simple demo application prepared which will help me with the presentation. As | have little
GAYS YR t20a (2 aK2g3> lo@dnSdvaddS LIF NER ff 04Stf =z

¢2 RSY2yadaN}as i
f

§ 1aey0Os LQY diAy3 Al G2 FSGOK
A8 YOKNRY2dza O f i

K &
® [SGQa FTANBRG as8S G(KS aeyOKNRyz2d

procedure TfrmMultithreadingMadeSimple.btnSyncGETClick(Sender: TObject);
var
page:string;
time: int64;
begin
time := DSiTimeGetTime64;
HttpGet('17slon.com’, 80, '/gp/biblio/articlesall.htm’, page, ");
IbLogAsync.ltems.Add(Format('Sync GET: %d ms; page length = %d',
[DSiElapsedTime64(time), Length(page)]));
end;

C A N& étting tee\eurrant time (using the timeGetTime multimedia function which offers a
millisecond accuracy), then | call a helper function HttpGet (included in the MMSHelpers unit) and at
the end | show the total time used for the call and the length of tharreed data (just to check that
anything was returned at all).

[SGQa&d NHzy (GKS RSY2 y2450

la &2dz Oy aSSs GKSNBQa a2yYS IOGA2y | fNBFRe 3A2Ay
times a second from the timer. This will show us very clearly whemrain thread is execution long
2LISNI GA2Yy O0GKS LINPINB&aa 0N gAff adG2LI0® LFX F2NJ
SESQOdziS (GKS O2RS 4S8 6SNB 2dzaid SEFYAYyAy3d X

X GKS O2RS g2dzZ R aid2L) F2NJ Fo2dzi (62 aSO2yRa oKAC
Y2dz R2y Qi KIF@S (2 R2 YdzOK (2 O2y@SNIi G(4KAa O2RS A

procedure TfrmMultithreadingMadeSimple.btnAsyncGETClick(Sender: TObject);
var
time: int64;
begin
time := DSiTimeGetTime64;
Parallel.Async(
procedure
var
page:string;
begin
HttpGet('17slon.com’, 80, ‘/gp/biblio/articlesall.htm’, page, ");
end);
IbLogAsync.ltems.Add(Format('Async: %d ms', [DSiElapsedTime64(time)]))
end;

The template code is still the samestore the time, run some code, display the time differeqdaut

GKA& GAYS 46S INB dzaAy3 tINIEfStdl a2dy0 G2 adl NI
parameterless anonymous method that wraps the HttpGat andg for now ¢ ignores the returned

page content.

LF L y2g OfA0] 2y GKS a!aeyO D9¢¢ odzitiz2y> L
The actual HttpGet operation is executing in the background. As the result of HttpGet is
(momentdNA f 80 GKNRBgY | g &3 (KSNSD Qiathedgugger2y S 41 &

L ¢gAff Lilzi + ONBIF{1LRAYG 2y (GKS 1 G4GLIDSGE OF t f
X IyR Ot A01 (GUKS odzidz2y F3lLAYyod
You can see in the Thread Status window that the code is really running in a background thread.

So howcan we get the result back to the main thread? There are few different ways, one of which is

OF v

L

GKS dzasS 2F AYOSNYylLt YLYy@21Sy YSOKIYAAYI GKAOK g2

¢2 dz&S AGZ 68Qff KIF @S (2 6 Ningthe ldwleRh PRSMEY (i Fy2ye

interface and add OtlTask to the _uses__ list.

procedure TfrmMultithreadingMadeSimple.btnAsyncGETResultClick(Sender: TObject);
var
time: int64;
begin
time := DSiTimeGetTime64;
Parallel. Async(
procedure (const taskOmniTask)
var
page: string;
time: int64;
begin
time := DSiTimeGetTime64;
HttpGet('17slon.com’, 80, ‘/gp/biblio/articlesall.htm’, page, ");
time := DSiElapsedTime64(time);
task.Invoke(
procedure
begin
IbLogAsync.ltems.Add(Format('Async GET: %d ms; page length = %d',
[time, Length(page)]))
end);
end);
IbLogAsync.ltems.Add(Format('Async: %d ms', [DSiElapsedTime64(time)]));
end:;

This interface representssingle task and you can use it to communicate with the main thread or to

Ay@21S a2yYS O2RS Ay GKS YIAYy GKNBIFIRI gKAOK A&

When HttpGet returns, the code will use task.Invoke to execute some code in the main thread and
this code vill update the user interface.

As you can see, we are how timing two operatigrise Async call and the execution time of the
background task.

[SGQa aSS K2g Al 62N} a X

0 K

Async only needed 2 milliseconds (because the thread executing the task was alrebdgnda
gFAGAY3 F2NI 62N] Ay GKS GKNBFR LR2f0 o6dzi GKS ol C
you can see yourself, the GUI was responsive all the time (the green bar is being constantly updated).

9y 2dzaK 2F G(KS 1 aeyOmref S(1Qa O2yliAydzs$S 6AGK GKS Cdz

- Future

* Future:=Parallel.Future<type>.
(calculation);

* Query Future.Value;

Future
(code)

\

code

Value

Result|

4!—

A future is a background calculation that returns a result. To create the task, call Parallel.Future
(providing the type returned from the calculation). To get the result of the calculation, call the .Value
method on the interface returned from the Parallel.Future call.

http://www.thedelphigeek.com/2010/06/futureof-delphi.html
http://www.thedelphigeek.@m/2011/07/life-after-21-exceptionsin.html

When you call the Parallel.Future, a background task is started immediately. The task will continue

ALK AGQa olLlraarote f2y30 SESOdziAz2zy FyYyR (GKS YI Ay
result of thebackground calculation, call the .Value method, which will return the result immediately

if it is ready or which will wait on the background code to complete its work if necessary.

4

¢2 RSY2yaidNIdS GKS dzaS 2F GKS CddzdodzNE O2y a i NHzOU =

procedure TfrmMultithreadingMadeSimple.btnFutureGETClick(Sender: TObject);
var
getFuture: IOmniFuture<string>;
page: string;
time: int64;
begin
time := DSiTimeGetTime64;
getFuture := Parallel.Future<string>(FutureGet);
IbLogFuture.ltems.Add(Format('Future: %d ms', [DSiElapsedTime64(time)]));
/I do some other processing
Sleep(1000);
page := getFuture.Value;
IbLogFuture.ltems.Add(Format('Future GET: %d ms; page length = %d',
[DSiElapsedTime64(time), Length(pdpe
end:;

The demo calls Parallel.Future of string with the FutureGet parameter. Then it logs the elapsed time
for the .Future call and does some other processing (simulated here by the Sleep function). At the
end it retrieves the result of the FutureGeinction.

FutureGet is just a simple function returning strinthe contents of the retrieved page.

function TfrmMultithreadingMadeSimple.FutureGET: string;
begin

HttpGet('17slon.com’, 80, ‘/gp/biblio/articlesall.htm’, Result, ");
end;

[S Qa iawsrks inkpeadtice.

The .Future call needed only 17 ms but the total execution time is still about a second and a half.
Main thread spent one second of that in the Sleep call and the rest in the .Value where it waited for
the future to return a result.

¥ &2dz R2y Qi 4l yid (G2 o0ft201 Ay (GKS o+l fdzS OlIffzx &:
IsDone function, another is to use TryValue instead of Value and the third one is to set up a
termination handler.

procedureTfrmMultithreadingMadeSimple.btnFutureGET TerminateClick(Sender:
TObject);
begin
FGetFuture := Parallel.Future<string>(FutureGet,
Parallel. TaskConfig.OnTerminated(FutureDone));
end,;

By providing second parametel a G a1 O 2ty théPardidblIFuiukezall we can set up a
parameterless method/procedure/anonymous code that will be executed when the background
calculation is completed.

In this case, result of the Future call must be stored in a form field (or another global instance) so
that it is not destroyed when the button handler exits.

procedure TfrmMultithreadingMadeSimple.FutureDone,;
var
page: string;
time: int64;
begin
time := DSiTimeGetTime64,
page = FGetFuture.Value;
FGetFuture := nil;
IbLogFuture.ltems.Add(Formét(iture Done: %d ms; page length = %d',
[DSiElapsedTime(time), Length(page)]));
end;

Ly GKS Cdzidz2NE52yS 4SS OFtf oxlfdzS G2 NBINARSGS
the future interface.

In this case the GUI is not blocking amdult is retrieved immediately. Of course, we have to wait a
second and a half for FutureDone to be called at all.

[SGQa O2yliAydsS 6A0GK W2AYyo®

- Join

 Parallel.Join([task1l, task2,
task3, .. taskN]).Execute

Join{codel,
code2, code3)

\

codel

l code2

code3

r————

Join takes multiple code fragments (that is methods, procedures or anonymous methods) and
executes each instown thread. It can optionally wait on all tasks to complete execution or it can
continue immediately.

http://www.thedelphigeek.com/2011/07/lifeafter-21-paralleljoinsnew-clothes.html

A very simple demo uses Join to execute two methods that spetitealtime sleeping; one for 2
and another for 3 seconds.

procedure TfrmMultithreadingMadeSimple.btnJoinClick(Sender: TObject);
var
time: int64;
begin
time := DSiTimeGetTime64;
Parallel.Join(Delay(2000), Delay(3000)).Execute;
IbLogJoin.ltems.AdB6rmat(‘Join: %d ms', [DSiElapsedTime64(time)]));
end;

The total execution time is, of course, three seconds.

l'a ¢S INB y20 dzaAy3a (GKS y2yot201Ay3 OSNBEAZY 2F V
show you how to use a newaiting version ira moment.

Just for fun, the Delay is implemented as a function that returns an anonymous method (which is
then executed in the background task).

function TfrmMultithreadingMadeSimple.Delay(timeout_ms: integer): TProc;
begin
Result :=
procedure
begin
Sleep(timeout_ms);

end;

end;

w»

9y2daAK 2F GKIdGzZ t8GQa Y208 G2 tINIttStcela|o

