Parallel Programming Done
Right with OTL and PPL

About me

o Pascal programmer since 1984 (HiSoft pascal on ZX Spectrum)
o First contact with Borland: Turbo Pascal 3 (on CP/M)
o Programming highly responsive 24/7 applications since 1997

o Writer: The Delphi Magazine, Blaise Pascal, Monitor (Slovenia)

o Blogger: http://thedelphigeek.com
o Contact me: http://primoz.gabrijelcic.org

http://thedelphigeek.com/
http://primoz.gabrijelcic.org/

Multithreading

Multithreading is hard

“New programmers

are drawn to multithreading
like moths to flame,

with similar results.”

- Danny Thorpe

Solution

o Extract all hard parts into a boilerplate code.
o Test it. Test again. Test repeatedly.
o Reuse as much as possible.

o Test again. Don’t stop testing.

o Use existing library.

o Continue testing.

When to do it?

o Unblocking GUI
> Long calculations

> Synchronous APIs

o File system
o (Serial) communication

o Speeding up the computation

o Faster calculation
> More/less appropriate tasks (algorithms)

> Serving more than one client at once

Patterns

Adapt algorithm to the pattern

o Don‘t write the code for your algorithm

o Decompose the algorithm into patterns
> Use those patterns in the code

o When everything fails, go low-level

o Tasks first, threads last

Frameworks

o PPL
> Parallel Programming Library

o XE7+, all platforms, RTL license
o patterns: For, Future, Join

o OTL
> OmniThreadLibrary

> 2009+ (patterns), 2007+ (tasks), Windows (VCL/console/service) only, OpenBSD
license

o patterns: Async[/Await], Background worker, For, Fork/Join, Future, Join, Map,
Parallel task, Pipeline

o http://www.omnithreadlibrary.com/

http://www.omnithreadlibrary.com/

Dish of the day

o Async/Await
> Fire asynchronous tasks

o Future
> Execute long calculation in background

o For
> Use all of available CPUs when processing large data

o Map
> Converting data in parallel

o TimedTask
o Just like TTimer, but running in a thread

Async/Await

Async(codel).
Await(code?)

code 1

code 2

Future

Future
(code)

.Value

Result

T

code

FOr

code

code

-
+—
(%)
(q0]

-
+—
(%]
| -
G
N
| -
o
L

Q
©
)
o

i
|
I
|
|
I
I
v
mapping
I
|
I
I
I
i
T
|
I
|
I
|
I
v

[oT0]
(O} c +
o | ___J_1 s | o E
5 —»> 3 - — — » 2
< £

oo

=

- — — — B O — - ——— >
©
£

dp

e’)
© oo
> £
22
& £
(o]

>

TimedTask

TimedTask.
Every(interval).
Execute(code)

timer

code

code

code

Other OmniThreadLibrary
patterns

Forkach

ForEach

(source, code)

(m———————————— source
I
| T
| - I
I Pz - '
| - |
] I
7 | ~
> 2 > : A
| ' '
v v v
code code code
| l |
I I I
| I I
| I I
| I |
| | I
I | %
... N | —
+
N I
\ I
N I
h |
| /
N _ Optional
__________________ output

ParallelTask

ParallelTask
(code)

code

code

code

Join

Join(codel,
code2, code3)

codel

code?

code3

Pipeline

Pipeline{source,

stagel, staged,
stage3)

E source ,Z— = stagel

-——Z templ / »

/ output /4—

stagel

—Z temp.Z ,Z— —»

E— e E— E—— E— E—— E— E— E— E— E— E— E— —

Fork/Join

_____________ computation o
| pool I

ForkJoin

(code)

Get more information

o http://www.omnithreadlibrary.com/tutorials.htm

o “Parallel Programming with OmniThreadLibrary” Parallel Programming
o https://leanpub.com/omnithreadlibrary

o http://otl.17slon.com/book

with Omnli'hreadLibrary

http://www.omnithreadlibrary.com/tutorials.htm
https://leanpub.com/omnithreadlibrary
http://otl.17slon.com/book

Keep in mind

Important Facts We Learned Today

o Don’t write boilerplate code — use patterns

o Be careful when accessing shared data

o Never access the GUI from a background thread!

