
Parallel Programming Done
Right with OTL and PPL

Primož Gabrijelčič

About me

o Pascal programmer since 1984 (HiSoft pascal on ZX Spectrum)

o First contact with Borland: Turbo Pascal 3 (on CP/M)

o Programming highly responsive 24/7 applications since 1997

o Writer: The Delphi Magazine, Blaise Pascal, Monitor (Slovenia)

o Blogger: http://thedelphigeek.com

o Contact me: http://primoz.gabrijelcic.org

http://thedelphigeek.com/
http://primoz.gabrijelcic.org/

Multithreading

Multithreading is hard

“New programmers
are drawn to multithreading
like moths to flame,
with similar results.”

- Danny Thorpe

Solution

o Extract all hard parts into a boilerplate code.

o Test it. Test again. Test repeatedly.

o Reuse as much as possible.

o Test again. Don’t stop testing.

– or –

o Use existing library.

o Continue testing.

When to do it?

o Unblocking GUI
◦ Long calculations

◦ Synchronous APIs
◦ File system

◦ (Serial) communication

o Speeding up the computation
◦ Faster calculation

◦ More/less appropriate tasks (algorithms)

◦ Serving more than one client at once

Patterns

Adapt algorithm to the pattern

o Don‘t write the code for your algorithm

o Decompose the algorithm into patterns
◦ Use those patterns in the code

o When everything fails, go low-level

o Tasks first, threads last

Frameworks

o PPL
◦ Parallel Programming Library

◦ XE7+, all platforms, RTL license

◦ patterns: For, Future, Join

o OTL
◦ OmniThreadLibrary

◦ 2009+ (patterns), 2007+ (tasks), Windows (VCL/console/service) only, OpenBSD
license

◦ patterns: Async[/Await], Background worker, For, Fork/Join, Future, Join, Map,
Parallel task, Pipeline

◦ http://www.omnithreadlibrary.com/

http://www.omnithreadlibrary.com/

Dish of the day

o Async/Await
◦ Fire asynchronous tasks

o Future
◦ Execute long calculation in background

o For
◦ Use all of available CPUs when processing large data

o Map
◦ Converting data in parallel

o TimedTask
◦ Just like TTimer, but running in a thread

Async/Await

Async(code1).
Await(code2)

code 1

code 2

Future

Future
(code)

code

.Value

Result

For

For(first, last,
code)

code code code

Map

Map(source,
mapping)

mapping mapping mapping

source

result

TimedTask

Other OmniThreadLibrary
patterns

ForEach

ParallelTask

Join

Pipeline

Fork/Join

Get more information

o http://www.omnithreadlibrary.com/tutorials.htm

o “Parallel Programming with OmniThreadLibrary”
◦ https://leanpub.com/omnithreadlibrary

◦ http://otl.17slon.com/book

http://www.omnithreadlibrary.com/tutorials.htm
https://leanpub.com/omnithreadlibrary
http://otl.17slon.com/book

Keep in mind

Important Facts We Learned Today

o Don’t write boilerplate code – use patterns

o Be careful when accessing shared data

o Never access the GUI from a background thread!

Q & A

