

Getting Full Speed with Delphi
[Why Single-Threading Is Not Enough?]

Primož Gabrijelčič
primoz@gabrijelcic.org

The Free Lunch is Over
For the last fifty years, we programmers had it easy. We could write
slow, messy, suboptimal code and when a customer complained we
would just say: "No problem, with the next year computers the
software will be quick as a lightning!" With some luck new hardware
would solve the problem and if not we could pretend to fix the
problem until new generation of computers came out. In other words -
Moore's law worked in our favor.

This situation changed radically in the past few years. This situation
changed radically in the last year. New processors are not significantly
faster than the old ones and unless something will drastically change in
CPU design and production, that will stay so. Instead of packing more
speed, manufacturers are now putting multiple processor units (or
cores as they are usually called) inside one CPU. In a way that gives our
customers faster computers, but only if they are using multiple
programs at once. Our traditionally written programs that can use only
one processor unit at any moment won't profit from multiple cores.

As we can all see, this is not good for us, programmers. We have to do
something to make our programs faster on multi-core processors. The
only way to do that is to make the program do more than one thing at
the same time and the simplest and most effective way to do it is to
use multithreading or using the ability of the operating system to
execute multiple threads simultaneously. [A note to experienced
readers: There's more to threads, threading and multithreading than I
will tell in today’s presentation. If you want to get a full story, check
the Wikipedia, en.wikipedia.org/wiki/Thread_(computer_science).]

Multithreading
As a programmer you probably know, at least instinctively, what is a
process. In operating system terminology, a process is a rough
equivalent of an application - when the user starts an application,
operating system creates and starts new process. Process contains (or
better, owns) application code, but also all resources that this code
uses - memory, file handles, device handles, sockets, windows etc.

When the program is executing, the system must also keep track of the
current execution address, state of the CPU registers and state of the
program's stack. This information, however, is not part of the process,
but belongs to a thread. Even a simplest program uses one thread,
which describes the program's execution. In other words, process
encapsulates program's static data while thread encapsulates the
dynamic part. During the program's lifetime, the thread describes its
line of execution - if we know the state of the thread at every moment,
we can fully reconstruct the execution in all details.

All operating systems support one thread per process (obviously) but
some go further and support multiple threads in one process. Actually,
most modern operating systems support multithreading (as this
approach is called), the difference is just in details. With
multithreading, operating system manages multiple execution paths
through the same code and those paths may execute at the same time
(and then again, they may not - but more on that later).

An important fact is that processes are heavy. It takes a long time (at
least at the operating system level where everything is measured in
microseconds) to create and load a new process. In contrast to that,
threads are light. New thread can be created almost immediately - all
the operating system has to do is to allocate some memory for the
stack and set up some control structures used by the kernel.

Another important point about processes is that they are isolated.
Operating system does its best to separate one process from another
so that buggy (or malicious) code in one process cannot crash another
process (or read private data from it). If you're old enough to
remember Windows 3 where this was not the case you can surely
appreciate the stability this isolation is bringing to the user. In contrast
to that, multiple threads inside a process share all process resources -
memory, file handles and so on. Because of that, threading is
inherently fragile - it is very simple to bring down one thread with a
bug in another.

In the beginning, operating systems were single-tasking. In other
words, only one task (i.e. process) could be executing at the same time

and only when it completed the job (when the task terminated), new
task can be scheduled (started).

As soon as the hardware was fast enough, multitasking was invented.
Most computers still had only one but through the operating system
magic it looked like this processor is executing multiple programs at
the same time. Each program was given a small amount of time to do
its job after which it was paused and another program took its place.
After some indeterminate time (depending on the system load,
number of higher priority tasks etc.) the program could execute again
and operating system would run it from the position in which it was
paused, again only for the small amount of time. In technical terms,
processor registers were loaded from some operating system storage
immediately before the program was given its time to run and were
stored back to this storage when program was paused.

Two very different approaches to multitasking are in use. In
cooperative multitasking, the process itself tells the operating system
when it is ready to be paused. This simplifies the operating system but
gives a badly written program an opportunity to bring down whole
computer. Remember Windows 3? That was cooperative multitasking
at its worst.

Better approach is pre-emptive multitasking where each process is
given its allotted time (typically about 55 milliseconds on a PC) and is
then pre-empted; that is, hardware timer fires and takes control from
the process and gives it back to the operating system which can then
schedule next process. This approach is used in Windows 95, NT and all
their successors. That way, multitasking system can appear to execute
multiple processes at once event if it has only one processor core.
Things go even better if there are multiple cores inside the computer
as multiple processes can really execute at the same time then.

The same goes for threads. Single-tasking systems were limited to one
thread per process by default. Some multitasking systems were
single-threaded (i.e. they could only execute one thread per process)
but all modern Windows are multithreaded - they can execute multiple
threads inside one process. Everything I said about multitasking applies
to threads too. Actually, it is the threads that are scheduled, not
processes.

Problems and Solutions
Multithreading can bring you speed, but it can also bring you grey hair.
There are many possible problems which you can encounter in
multithreaded code that will never appear in a single-threaded
program.

For example, splitting task into multiple threads can make the
execution slower instead of faster. There are not many problems that
can be nicely parallelized and in most cases we must pass some data
from one thread to another. If there's too much communication
between threads, communication can use more CPU than the actual,
data processing code.

Then there's a problem of data sharing. When threads share data, we
must be very careful to keep this data in a consistent state. For
example, if two threads are updating shared data, it may end in a
mixed state where half the data was written by the first thread and
another half by the second.

This problem, race condition as it's called, is usually solved by some
kind of synchronization. We use some kind of locking (critical sections,
mutexes, spinlocks, semaphores) to make sure that only one thread at
a time can update the data. However, that brings us another problem
or two. Firstly, synchronization makes the code slower. If two threads
try to enter such locked code, only one will succeed and another will
be temporarily suspended and our clever, multithreaded program will
again use only one CPU core.

Secondly, synchronization can cause deadlocks. This is a state where
two (or more) threads forever wait on each other. For example, thread
A is waiting on a resource locked by thread B and thread B is waiting on
a resource locked by thread A. Not good. Deadlocks can be very tricky;
easy to introduce into the code and hard to find.

There's a way around synchronization problems too. You can avoid
data sharing and use messaging systems to pass data around or you
can use well-tested lock-free structures for data sharing. That doesn't
solve the problem of livelocks though. In livelock state, two (or more)
threads are waiting on some resource that will never be freed because
the other thread is using it, but they do that dynamically - they're not
waiting for some synchronization object to become released. The code
is executing and threads are alive, they can just not enter a state where
all conditions will be satisfied at once.

Four Paths to Multithreading
There’s more than one way to skin a cat (supposedly) and there’s more
than one way to create a thread. Of all the options I have selected four
more interesting to the Delphi programmer.

The Delphi Way
Creating a thread in Delphi is as simple as declaring a class that
descends from the TThread class (which lives in the Classes unit),
overriding its Execute method and instantiating an object of this class
(in other words, calling TMyThread.Create). Sounds simple, but the
devil is, as always, in the details.

 TMyThread = class(TThread)
 protected
 procedure Execute; override;
 end;

 FThread1 := TMyThread1.Create;

The Windows Way
Surely, the TThread class is not complicated to use but the eternal
hacker in all of us wants to know – how? How is TThread
implemented? How do threads function at the lowest level. It turns out
that the Windows' threading API is not overly complicated and that it
can be easily used from Delphi applications.

It's easy to find the appropriate API, just look at the TThread.Create.
Besides other things it includes the following code (Delphi 2007):

 FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self),
 CREATE_SUSPENDED, FThreadID);
 if FHandle = 0 then
 raise EThread.CreateResFmt(@SThreadCreateError,
 [SysErrorMessage(GetLastError)]);

If we follow this a level deeper, into BeginThread, we can see that it
calls CreateThread. A short search points out that this is a Win32 kernel
function, and a look into the MSDN confirms that it is indeed a true
and proper way to start a new thread.

One thing has to be said about the Win32 threads – why to use them at
all? Why go down to the Win32 API if the Delphi's TThread is so more
comfortable to use? I can think of two possible answers.

Firstly, you would use Win32 threads if working on a multi-language
application (built using DLLs compiled with different compilers) where

threads objects are passed from one part to another. A rare occasion,
I'm sure, but it can happen.

Secondly, you may be creating lots and lots of threads. Although that is
not really something that should be recommended, you may have a
legitimate reason to do it. As the Delphi's TThread uses 1 MB of stack
space for each thread, you can never create more than (approximately)
2000 threads. Using CreateThread you can provide threads with
smaller stack and thusly create more threads – or create a program
that successfully runs in a memory-tight environment. If you're going
that way, be sure to read great blog post by Raymond Chen at
blogs.msdn.com/oldnewthing/archive/2005/07/29/444912.aspx.

The Lightweight Way
From complicated to simple … There are many people on the Internet
who thought that Delphi's approach to threading is overly complicated
(from the programmer's viewpoint, that it). Of those, there are some
that decided to do something about it. Some wrote components that
wrap around TThread, some wrote threading libraries, but there's also
a guy that tries to make threading as simple as possible. His name is
Andreas Hausladen (aka Andy) and his library (actually it's just one
unit) is called AsyncCalls and can be found at
andy.jgknet.de/blog/?page%5Fid=100.

AsyncCalls is very generic as it supports all Delphis from version 5
onwards. It is licensed under the Mozilla Public License 1.1, which
doesn't limit the use of AsyncCalls inside commercial applications. The
only downside is that the documentation is scant and it may not be
entirely trivial to start using AsyncCalls for your own threaded code.
Still, there are some examples on the page linked above. This article
should also help you started.

To create and start a thread (there is no support for creating threads in
suspended state), just call AsyncCall method and pass it the name of
the main thread method.

procedure TfrmTestAsyncCalls.btnStartThread1Click(Sender: TObject);
begin
 FThreadCall1 := AsyncCall(ThreadProc1, integer(@FStopThread1));
 Log('Started thread'); // AsyncCalls threads have no IDs
end;

AsyncCalls is a great solution to many threading problems. As it is
actively developed, I can only recommend it.

The No-Fuss Way
I could say that I left the best for the end but that would be bragging.
Namely, the last solution I'll describe is of my own making.

OmniThreadLibrary (OTL for short) approaches the threading problem
from a different perspective. The main design guideline was: “Enable
the programmer to work with threads in as fluent way as possible.”
The code should ideally relieve you from all burdens commonly
associated with multithreading. I'm the first to admit that the goal was
not reached yet, but I'm slowly getting there.

The bad thing is that OTL has to be learned. It is not a simple unit that
can be grasped in an afternoon, but a large framework with lots of
functions. On the good side, there are many examples
(otl.17slon.com/tutorials.htm; you'll also find download links there).
On the bad side, the documentation is scant. Sorry for that, but you
know how it goes – it is always more satisfying to program than to
write documentation. Another downside is that it supports only Delphi
2007 and newer. OTL is released under the BSD license which doesn't
limit you from using it in commercial applications in any way.

OTL is a message based framework and uses custom, extremely fast
messaging system. You can still use any blocking stuff and write
TThread-like multithreading code, if you like. Synchronize is, however,
not supported. Why? Because I think it's a bad idea, that's why.

While you can continue to use low-level approach to multithreading,
OTL supports something much better – high-level primitives.

High Level Multithreading
At this moment (March 2011), OmniThreadLibrary supports five
high-level multithreading concepts:

 Join

 Future

 Pipeline

 Fork/Join

 Parallel for

The implementation of those tools actively uses anonymous methods
which is why they are supported only in Delphi 2009 and newer.

Those tools help the programmer to implement multithreaded solution
without thinking about thread creation and destruction. All those tools
are implemented in the OtlParallel unit.

Join
The simplest of those tools is Join. It allows you to start multiple
background tasks and wait until they have all completed. No result is
returned – at least directly, as you can always store result into a shared
variable. If your code returns a result, a better approach may be to use
a Future or Fork/Join.

A simple demonstration of Join (below) starts two tasks – one sleeps
for two and another for three seconds. When you run this code,
Parallel.Join will create two background threads and run RunTask1 in
first and RunTask2 in second. It will then wait for both threads to
complete their work and only then the execution of main thread will
continue.

procedure TfrmOTLDemoJoin.btnParallelClick(Sender: TObject);
begin
 Parallel.Join([RunTask1, RunTask2]);
end;

procedure TfrmOTLDemoJoin.RunTask1;
begin
 Sleep(2000);
end;

procedure TfrmOTLDemoJoin.RunTask2;
begin
 Sleep(3000);
end;

Join takes special care for compatibility with single-core computers. If
you run the above code on a single-core machine (or if you simply limit
the process to one core), it will simply execute tasks sequentially,
without creating a thread.

Join accepts anonymous methods. The above demo could also be
coded as a single method executing two anonymous methods.

procedure TfrmOTLDemoJoin.btnAnonymousClick(Sender: TObject);
begin
 Parallel.Join(
 procedure begin
 Sleep(2000);
 end,
 procedure begin
 Sleep(3000);
 end);
end;

There are four overloaded Join methods. Two are accepting two tasks
and two are accepting any number of tasks. [The first demo above uses
latter version of Join and the second demo the former version.]

Two version of Join accept procedure (task: IOmniTask) instead of a
simple procedure and can be used if you have to communicate with the
main thread during the execution. To do so, you would have to learn
more about communication and tasks, which will be covered later in
this document.

class procedure Join(const task1, task2: TProc); overload;
class procedure Join(const task1, task2: TOmniTaskDelegate); overload;
class procedure Join(const tasks: array of TProc); overload;
class procedure Join(const tasks: array of TOmniTaskDelegate); overload;

Join is demonstrated in demo 37_ParallelJoin (part of the
OmniThreadLibrary package).

Future
“They (futures) describe an object that acts as a proxy for a

result that is initially not known, usually because the
computation of its value has not yet completed.”

– Wikipedia

Futures are a tool that help you start background calculation and then
forget about it until you need the result of the calculation.

To start background calculation, you simply create a IOmniFuture
instance of a specific type (indicating the type returned from the
calculation).

Future := Parallel.Future<type>(calculation);

Calculation will start in background and main thread can continue with
its work. When the calculation result is needed, simply query
Future.Value. If the calculation has already completed its work, value
will be returned immediately. If not, the main thread will block until
the background calculation is done.

The example below starts background calculation that calculates
number of prime numbers in interval 1..1000000. While the calculation
is running, it uses main thread for “creative” work – outputting
numbers into listbox and sleeping. At the end, calculation result is
returned by querying future.Value.

procedure TfrmOTLDemoFuture.btnCalcFutureClick(Sender: TObject);
const
 CMaxPrimeBound = 1000000;
var
 future : IOmniFuture<integer>;
 i : integer;
 numPrimes: integer;
begin
 future := Parallel.Future<integer>(
 function: integer
 begin
 Result := CountPrimesTo(CMaxPrimeBound);
 end
);

 for i := 1 to 10 do begin
 lbLog.Items.Add(IntToStr(i));
 Sleep(20);
 lbLog.Update;
 end;

 Log(Format('Num primes up to %d: %d', [CMaxPrimeBound, future.Value]));
end;

As with Join, there are two Future<T> overloads, one exposing the
internal task parameter and another not.

class function Future<T>(action: TOmniFutureDelegate<T>): IOmniFuture<T>; overload;
class function Future<T>(action: TOmniFutureDelegateEx<T>): IOmniFuture<T>; overload;

IOmniFuture<T> has some other useful features. You can cancel the
calculation (Cancel) and check if calculation has been cancelled
(IsCancelled). You can also check if calculation has already completed
(IsDone and TryValue).

 IOmniFuture<T> = interface
 procedure Cancel;

 function IsCancelled: boolean;
 function IsDone: boolean;
 function TryValue(timeout_ms: cardinal; var value: T): boolean;
 function Value: T;
 end;

Futures are demoed in project 39_Futures. They were also topic of my
blog post www.thedelphigeek.com/2010/06/omnithreadlibrary-
20-sneak-preview-2.html.

Interestingly, futures can be very simply implemented on top of
Delphi’s TThread. I wrote about that in www.thedelphigeek.com/
2010/06/future-of-delphi.html.

Pipeline
Pipeline construct implements high-level support for multistage
processes. The assumption is that the process can be split into stages
(or suprocesses), connected with data queues. Data flows from the
(optional) input queue into the first stage, where it is partially
processed and then emitted into intermediary queue. First stage then
continues execution, processes more input data and outputs more
output data. This continues until complete input is processed.
Intermediary queue leads into the next stage which does the
processing in a similar manner and so on and on. At the end, the data
is output into a queue which can be then read and processed by the
program that created this multistage process. As a whole, a multistage
process functions as a pipeline – data comes in, data comes out.

What is important here is that no stage shares state with any other
stage. The only interaction between stages is done with the data
passed through the intermediary queues. The quantity of data,
however, doesn’t have to be constant. It is entirely possible for a stage
to generate more or less data than it received on input.

In a classical single-threaded program the execution plan for a
multistage process is very simple.

In a multithreaded environment, however, we can do better than that.
Because the stages are largely independent, they can be executed in
parallel.

A pipeline is created by calling Parallel.Pipeline function which returns
IOmniPipeline interface. There are two overloaded versions – one for
general pipeline building and another for simple pipelines that don’t
require any special configuration.

class function Pipeline: IOmniPipeline; overload;
class function Pipeline(
 const stages: array of TPipelineStageDelegate;
 const input: IOmniBlockingCollection = nil):
 IOmniPipeline; overload;

The latter version takes two parameters – an array of processing stages
and an optional input queue. Input queue can be used to provide initial
data to the first stage. It is also completely valid to pass ‘nil’ for the
input queue parameter and run the first stage without any input.

Blocking collections (they are covered later in this document) are used
for data queuing in the Parallel.Pipeline implementation.

Stages are implemented as anonymous procedures, procedures or
methods taking two queue parameters – one for input and one for
output. Except in the first stage where the input queue may not be
defined, both are automatically created by the Pipeline
implementation and passed to the stage delegate.

TPipelineStageDelegate = reference to procedure
 (const input, output: IOmniBlockingCollection);

The next code fragment shows a simple pipeline containing five stages.
Result of Parallel.Pipeline is a IOmniBlockingCollection, which is a kind
of single-ended queue. Result is accessed by reading an element from
this queue (by calling pipeOut.Next), which will block until this element
is ready.

procedure TfrmOTLDemoPipeline.btnCalcPipelineClick(Sender: TObject);
var
 pipeOut: IOmniBlockingCollection;
begin
 pipeOut := Parallel.Pipeline([
 StageGenerate,
 StageMult2,
 StageMinus3,
 StageMod5,
 StageSum]
).Run;

 Log(Format('Pipeline result: %d', [pipeOut.Next.AsInteger]));
end;

Pipeline stages are shown below. First stage ignores the input (which is
not provided) and generates elements internally. Each element is
written to the output queue.

procedure StageGenerate(const input, output: IOmniBlockingCollection);
var
 i: integer;
begin
 for i := 1 to CNumTestElements do
 if not output.TryAdd(i) then Exit;
end;

Next three stages are reading data from input (by using for..in loop),
and outputting modified data into output queue. For..in will
automatically terminate when previous stage terminates and input
queue runs out of data.

procedure StageMult2(const input, output: IOmniBlockingCollection);
var
 value: TOmniValue;
begin
 for value in input do

 if not output.TryAdd(2 * value.AsInteger) then
 Exit;
end;

procedure StageMinus3(const input, output: IOmniBlockingCollection);
var
 value: TOmniValue;
begin
 for value in input do
 if not output.TryAdd(value.AsInteger - 3) then
 Exit;
end;

procedure StageMod5(const input, output: IOmniBlockingCollection);
var
 value: TOmniValue;
begin
 for value in input do
 if not output.TryAdd(value.AsInteger mod 5) then
 Exit;
end;

The last stage also reads data from input but outputs only one number
– a sum of all input values.

procedure StageSum(const input, output: IOmniBlockingCollection);
var
 sum : integer;
 value: TOmniValue;
begin
 sum := 0;
 for value in input do
 Inc(sum, value);
 output.TryAdd(sum);
end;

The full power of the IOmniPipeline interface is usually accessed via
the parameterless Parallel.Pipeline function.

 IOmniPipeline = interface
 procedure Cancel;
 function Input(const queue: IOmniBlockingCollection): IOmniPipeline;
 function NumTasks(numTasks: integer): IOmniPipeline;
 function Run: IOmniBlockingCollection;
 function Stage(pipelineStage: TPipelineStageDelegate): IOmniPipeline; overload;
 function Stage(pipelineStage: TPipelineStageDelegateEx): IOmniPipeline;
 overload;
 function Stages(const pipelineStages: array of TPipelineStageDelegate):
 IOmniPipeline; overload;
 function Stages(const pipelineStages: array of TPipelineStageDelegateEx):
 IOmniPipeline; overload;
 function Throttle(numEntries: integer; unblockAtCount: integer = 0):
 IOmniPipeline;
 end;

Input sets the input queue. If it is not called, input queue will not be
assigned and the first stage will receive nil for the input parameter.

Stage adds one pipeline stage.

Stages adds multiple pipeline stages.

NumTasks sets the number of parallel execution tasks for the stage(s)
just added with the Stage(s) function (IOW, call Stage followed by
NumTasks to do that). If it is called before any stage is added, it will
specify the default for all stages. Number of parallel execution tasks for
a specific stage can then still be overridden by calling NumTasks after
the Stage is called.

Throttle sets the throttling parameters for stage(s) just added with the
Stage(s) function. Just as the NumTask it affects either the global
defaults or just currently added stage(s). By default, throttling is set to
10240 elements.

Run does all the hard work – creates queues and sets up
OmniThreadLibrary tasks. It returns the output queue which can be
then used in your program to receive the result of the computation.
Even if the last stage doesn’t produce any result this queue can be
used to signal the end of computation.

Read more about pipelines in the OmniThreadLibrary on
www.thedelphigeek.com/2010/11/multistage-processes-with.ht

ml.

Pipelines are demoed in project 41_Pipelines.

Fork/Join
Fork/Join is an implementation of “Divide and conquer” technique. In
short, Fork/Join allows you to:

- Execute multiple tasks

- Wait for them to terminate

- Collect results

The trick here is that subtasks may spawn new subtasks and so on ad
infinitum (probably a little less, or you’re run out of stack ;)). For
optimum execution, Fork/Join must there for guarantee that the code
is never running too much background threads (an optimal value is
usually equal to the number of cores in the system) and that those
threads don’t run out of work.

Fork/Join subtasks are in many way similar to Futures. They offer
slightly less functionality (no cancellation support) but they are
enhanced in another way – when Fork/Join subtasks runs out of work,
it will start executing some other task’s workload keeping the system
busy.

A typical way to use Fork/Join is to create an IOmniForkJoin<T>
instance

forkJoin := Parallel.ForkJoin<integer>;

and then create computations owned by this instance

max1 := forkJoin.Compute(
 function: integer begin
 Result := …
 end);
max2 := forkJoin.Compute(
 function: integer begin
 Result := …
 end);

To access computation result, simply call computation object’s Value
function.

Result := Max(max1.Value, max2.Value);

The code below shows how Fork/Join can be used to find maximum
element in an array. At each computation level, ParallelMaxRange
receives a slice of original array. If it is small enough, sequential
function is called to determine maximum element in the slice.
Otherwise, two subcomputations are created, each working on one
half of the original slice.

function ParallelMaxRange(const forkJoin: IOmniForkJoin<integer>;
 intarr: PIntArray; low, high, cutoff: integer): integer;

 function Compute(low, high: integer): IOmniCompute<integer>;
 begin
 Result := forkJoin.Compute(
 function: integer
 begin
 Result := ParallelMaxRange(forkJoin, intarr, low, high, cutoff);
 end
);
 end;

var
 max1: IOmniCompute<integer>;
 max2: IOmniCompute<integer>;
 mid : integer;
begin
 if (high-low) < cutoff then

 Result := SequentialMaxRange(intarr, low, high)
 else begin
 mid := (high + low) div 2;
 max1 := Compute(low, mid);
 max2 := Compute(mid+1, high);
 Result := Max(max1.Value, max2.Value);
 end;
end;

function TfrmOTLDemoForkJoin.RunParallel(intarr: PIntArray; low, high,
 cutoff: integer): integer;
begin
 Result := ParallelMaxRange(Parallel.ForkJoin<integer>, intarr, low, high, cutoff);
end;

As this is a very recent addition to OmniThreadLibrary (presented first
time here at ADUG), there are no demoes or blog articles that would
help you understand the Fork/Join. Stay tuned!

Parallel For
Parallel For (actually called ForEach because For would clash with the
reserved keyword for) is a construct that enumerates in a parallel
fashion over different containers. The most typical usage is
enumerating over range of integers (just like in the classical for), but it
can also be used similar to the for..in – for enumerating over Delphi- or
Windows-provided wnumerators.

A very simple example loops over an integer range and increments a
global counter for each number that is also a prime number. In other
way, the code below counts number of primes in range
1..CHighPrimeBound.

procedure TfrmOTLDemoParallelFor.btnParallelClick(Sender: TObject);
var
 numPrimes: TGp4AlignedInt;
begin
 numPrimes.Value := 0;
 Parallel
 .ForEach(2, CHighPrimeBound)
 .Execute(
 procedure (const value: integer)
 begin
 if IsPrime(value) then
 numPrimes.Increment;
 end
);

 Log(Format('%d primes', [numPrimes.Value]));
end;

If you have data in a container that supports enumeration (with one
limitation – enumerator must be implemented as a class, not as an
interface or a record) then you can enumerate over it in parallel.

 nodeList := TList.Create;
 // …
 Parallel.ForEach<integer>(nodeList).Execute(
 procedure (const elem: integer)
 begin
 if IsPrime(elem) then
 outQueue.Add(elem);
 end);

[Note: The outQueue parameter is of type IOmniBlockingCollection
which allows Add to be called from multiple threads simultaneously.]

ForEach backend allows parallel loops to be executed asynchronously.
In the code below, parallel loop tests numbers for primeness and adds
primes to a TOmniBlockingCollection queue. A normal for loop,
executing in parallel with the parallel loop, reads numbers from this
queue and displays them on the screen.

var
 prime : TOmniValue;
 primeQueue: IOmniBlockingCollection;
begin
 lbLog.Clear;
 primeQueue := TOmniBlockingCollection.Create;

 Parallel.ForEach(1, 1000).NoWait
 .OnStop(
 procedure
 begin
 primeQueue.CompleteAdding;
 end)
 .Execute(
 procedure (const value: integer)
 begin
 if IsPrime(value) then begin
 primeQueue.Add(value);
 end;
 end);

 for prime in primeQueue do begin
 lbLog.Items.Add(IntToStr(prime));
 lbLog.Update;
 end;
end;

This code depends on a TOmniBlockingCollection feature, namely that
the enumerator will block when the queue is empty unless
CompleteAdding is called. That’s why the OnStop delegate must be

provided – without it the “normal” for loop would never stop. (It would
just wait forever on the next element.)

While this shows two powerful functions (NoWait and OnStop) it is also
kind of complicated and definitely not a code I would want to write too
many times. That’s why OmniThreadLibrary also provides a syntactic
sugar in a way of the Into function.

var
 prime : TOmniValue;
 primeQueue: IOmniBlockingCollection;
begin
 lbLog.Clear;
 primeQueue := TOmniBlockingCollection.Create;

 Parallel.ForEach(1, 1000).PreserveOrder.NoWait
 .Into(primeQueue)
 .Execute(
 procedure (const value: integer; var res: TOmniValue)
 begin
 if IsPrime(value) then
 res := value;
 end);
 for prime in primeQueue do begin
 lbLog.Items.Add(IntToStr(prime));
 lbLog.Update;
 end;
end;

This code demoes few different enhacements to the ForEach loop.
Firstly, you can order the Parallel subsystem to preserve input order by
calling the PreservedOrder function. Secondly, because Into is called,
ForEach will automatically call CompleteAdding on the parameter
passed to the Into when the loop completes. No need for the ugly
OnStop call.

Thirdly, Execute (also because of the Into) takes a delegate with a
different signature. Instead of a standard ForEach signature procedure
(const value: T) you have to provide it with a procedure (const value:
integer; var res: TOmniValue). If the output parameter (res) is set to
any value inside this delegate, it will be added to the Into queue and if
it is not modified inside the delegate, it will not be added to the Into
queue.

If you want to iterate over something very nonstandard, you can write
a “GetNext” delegate (parameter to the ForEach<T> itself):

 Parallel.ForEach<integer>(
 function (var value: integer): boolean
 begin
 value := i;
 Result := (i <= testSize);
 Inc(i);
 end)
 .Execute(
 procedure (const elem: integer)
 begin
 outQueue.Add(elem);
 end);

In case you wonder what the possible iteration sources are, here’s the
full list:

 ForEach(const enumerable: IOmniValueEnumerable): IOmniParallelLoop;
 ForEach(const enum: IOmniValueEnumerator): IOmniParallelLoop;
 ForEach(const enumerable: IEnumerable): IOmniParallelLoop;
 ForEach(const enum: IEnumerator): IOmniParallelLoop;
 ForEach(const sourceProvider: TOmniSourceProvider): IOmniParallelLoop;
 ForEach(enumerator: TEnumeratorDelegate): IOmniParallelLoop;
 ForEach(low, high: integer; step: integer = 1): IOmniParallelLoop<integer>;
 ForEach<T>(const enumerable: IOmniValueEnumerable): IOmniParallelLoop<T>;
 ForEach<T>(const enum: IOmniValueEnumerator): IOmniParallelLoop<T>;
 ForEach<T>(const enumerable: IEnumerable): IOmniParallelLoop<T>;
 ForEach<T>(const enum: IEnumerator): IOmniParallelLoop<T>;
 ForEach<T>(const enumerable: TEnumerable<T>): IOmniParallelLoop<T>;
 ForEach<T>(const enum: TEnumerator<T>): IOmniParallelLoop<T>;
 ForEach<T>(enumerator: TEnumeratorDelegate<T>): IOmniParallelLoop<T>;
 ForEach(const enumerable: TObject): IOmniParallelLoop;
 ForEach<T>(const enumerable: TObject): IOmniParallelLoop<T>;

The last two versions are used to iterate over any object that supports
class-based enumerators. Sadly, this feature is only available in Delphi
2010 because it uses extended RTTI to access the enumerator and its
methods.

A special care has been taken to achieve fast execution. Worker
threads are not fighting for input values but are cooperating and
fetching input values in blocks.

The backend allows for efficient parallel enumeration even when the
enumeration source is not threadsafe. You can be assured that the
data passed to the ForEach will be accessed only from one thread at
the same time (although this will not always be the same thread). Only
in special occasions, when backend knows that the source is threadsafe
(for example when IOmniValueEnumerator is passed to the ForEach),
the data will be accessed from multiple threads at the same time.

Parallel For is demoed in projects 35_ParallelFor, 36_ParallelAggregate,
37_ParallelJoin and 38_OrderedFor and its functioning is covered by

blog post www.thedelphigeek.com/2010/06/omnithreadlibrary-
20-sneak-preview-1.html and by the “implementation trilogy”
www.thedelphigeek.com/2011/01/parallel-for-implementation-

1-overview.html (overview),
www.thedelphigeek.com/2011/01/parallel-for-implementation-

2-input.html(input), and
www.thedelphigeek.com/2011/02/parallel-for-implementation-

3-output.html (output).

Low Level Multithreading
OmniThreadLibrary started as a low-level multithreading library. It was
only later that support for high-level multithreading primitives was
added. Although the focus of today’s presentation is on a high-level
tools I should at least mention low-level primitives that made all
high-level stuff possible.

Messaging
OmniThreadLibrary tries to move as much away from the shared data
approach as possible. Instead of that, cooperation between threads is
achieved with messaging.

All data in the OmniThreadLibrary is passed around as a TOmniValue
record, which is in functionality similar to Delphi’s Variant or TValue
except that it’s faster. It can contain any scalar type (integer, real,
TDateTime …), strings of any type, objects and interfaces.

For more information read: www.thedelphigeek.com/2010/03/
speed-comparison-variant-tvalue-and.html.

Communication between threads is implemented with
TOmniMessageQueue, which passes (message ID, message data) pairs
over the O(1) enqueue and dequeue, fixed-size, microlocking queue
TOmniBoundedQueue. Its implementation is described in
www.thedelphigeek.com/2008/07/omnithreadlibrary-internals.

html.

For higher-level programming, bounded queues are not so limited and
that’s why I developed TOmniQueue, a dynamically allocated, O(1)
enqueue and dequeue, threadsafe, microlocking queue (yes, I’m very
proud of it ;)). You can think of it as of a very fast single-ended queue
that can also be used in single-thread environment. It’s internals are
described in blog post www.thedelphigeek.com/2010/02/dynamic-
lock-free-queue-doing-it-right.html.

Maybe the most useful queue-like tool of them all is
TOmniBlockingCollection. It mimics .Net Framework 4’s

BlockingCollection (msdn.microsoft.com/en-us/library/dd267312
(VS.100).aspx). The blocking collecting is exposed as an interface
that lives in the OtlCollections unit.

 IOmniBlockingCollection = interface(IGpTraceable)
 ['{208EFA15-1F8F-4885-A509-B00191145D38}']
 procedure Add(const value: TOmniValue);
 procedure CompleteAdding;
 function GetEnumerator: IOmniValueEnumerator;
 function IsCompleted: boolean;
 function Take(var value: TOmniValue): boolean;
 function TryAdd(const value: TOmniValue): boolean;
 function TryTake(var value: TOmniValue; timeout_ms: cardinal = 0): boolean;
 end;

The blocking collection works in the following way:

 Add will add new value to the collection (which is internally
implemented as a queue (FIFO, first in, first out)).

 CompleteAdding tells the collection that all data is in the queue.
From now on, calling Add will raise an exception.

 TryAdd is the same as Add except that it doesn’t raise an
exception but returns False if the value can’t be added.

 IsCompleted returns True after the CompleteAdding has been
called.

 Take reads next value from the collection. If there’s no data in
the collection, Take will block until the next value is available. If,
however, any other thread calls CompleteAdding while the Take
is blocked, Take will unblock and return False.

 TryTake is the same as Take except that it has a timeout
parameter specifying maximum time the call is allowed to wait
for the next value.

 Enumerator calls Take in the MoveNext method and returns that
value. Enumerator will therefore block when there is no data in
the collection. The usual way to stop the enumerator is to call
CompleteAdding which will unblock all pending MoveNext calls
and stop enumeration.

A longer treatise on blocking collection (together with a very
interesting example) is available at www.thedelphigeek.com/2010/
02/three-steps-to-blocking-collection-3.html.

Tasks
In OTL you don't create threads but tasks. A task can be executed in a
new thread (as I did in the demo program testOTL) or in a thread pool.

A task is created using CreateTask, which takes as a parameter a global
procedure, a method, an instance of TOmniWorker class (or, usually, a
descendant of that class) or an anonymous procedure (in Delphi 2009
and newer). CreateTask returns an interface, which can be used to
control the task. As (almost) all methods of this interface return Self,
you can chain method calls in a fluent way. The code fragment above
uses this approach to declare a message handler (a method that will be
called when the task sends a message to the owner) and then starts
the task. In OTL, a task is always created in suspended state and you
have to call Run to activate it.

Thread Pool
Because starting a thread takes noticeable amount of time,
OmniThreadLibrary supports concept of thread pools. A thread pool
keeps threads alive even when they are not used so a task can be
started immediately if such thread is waiting for something to do.

Thread pool in OmniThreadLibrary supports automatic thread creation
and destruction with user settable parameters such as maximum
number of threads and maximum inactivity a thread is allowed to
spend in idle state.

Using thread pool instead of “normal” thread is simple – just call
Schedule on the task control interface instead of Run.

When To Use Multithreading?
The most common case is probably a slow program. You just have to
find a way to speed it up. If that's the case we must somehow split the
slow part into pieces that can be executed at the same time (which
may be very hard to do) and then put each such piece into one thread.
If we are very clever and if the problem allows that, we can even do
that dynamically and create as many threads are there are processing
units.

Another good reason to implement more than one thread in a program
is to make it more responsive. In general, we want to move lengthy
tasks away from the thread that is serving the graphical interface (GUI)
into threads that are not interacting with the user (i.e. background
threads). A good candidate for such background processing are long

database queries, lengthy imports and exports, long CPU-intensive
calculations, file processing and more.

Sometimes, multithreading will actually simplify the code. For example,
if you are working with an interface that has simple synchronous API
(start the operation and wait for its result) and complicated
asynchronous API (start the operation and you'll somehow be notified
when it is completed) as are file handling APIs, sockets etc, it is often
simpler to put a code that uses synchronous API into a separate thread
than to use asynchronous API in the main program. If you are using
some 3rd party library that only offers you a synchronous API you'll
have no choice but to put it into a separate thread.

A good multithreading example is server that can serve multiple
clients. Server usually takes a request from the client and then, after
some potentially lengthy processing, returns a result. If the server is
single-threaded, the code must be quite convoluted to support
multiple simultaneous clients. It is much simpler to start multiple
threads, each to serve one client.

Testing
When you’re writing multithreaded applications a proper approach to
testing will (and please note that I’m not using “may” or “can”!) mean
a difference between a working and crashing code.

Always write automated stress tests for your multithreaded code.
Write a testing app that will run some (changeable) number of threads
that will execute your code for some prolonged time and then check
the results, status of internal data structures, etc. – whatever your
multithreaded code is depending upon. Run those tests whenever you
change the code. Run them for long time – overnight is good.

Always test multithreaded code on small and large number of threads.
Always test your apps with minimum number of required threads
(even one, if it makes sense) on only one core and then increase
number of threads and cores until your running many more threads
than you have cores. I’ve found out that most problems occur when
threads are blocked at “interesting” points in the execution and the
simplest way to simulate this is to overload the system by running
more threads than there are cores.

When you find a problem in the application that the automated test
didn’t find, make sure that you first understand how to repeat the
problem. Include it in the automated test next and only then start to fix
it.

In other words – unit testing is your friend. Use it!

Application design
Most bugs in multithreaded programs spring from too complicated
designs. Complicated architecture equals complicated and hard to find
(and even harder to fix) problems. Keep it simple!

Instead of inventing your own multithreaded solutions, use as many
well-tested tools as possible. More users = more found bugs. Of
course, you should make sure that your tools are regularly upgraded
and that you’re no using some obsolete code that everybody has run
away from.

Keep the interaction points between threads simple, small and well
defined. That will reduce the possibility of conflicts and will simplify the
creation of automated tests.

Share as little data as possible. Global state (shared data) requires
locking and is therefore bad by definition. Message queues will reduce
possibility for deadlocking. Still, don’t expect message-based solutions
to be magically correct – they can still lead to locking.

And besides everything else – have fun! Multithreaded programming is
immensely hard but is also extremely satisfying.

