
CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

FASTER PARALLEL

PROGRAMS WITH

IMPROVED FASTMM

Primož Gabrijelčič
@thedelphigeek

http://primoz.gabrijelcic.org

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

INFO

Slides and code are available at
http://thedelphigeek.com/p/presentations.html

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

HISTORY

• Developed by Pierre LeRiche for the FastCode project
• https://en.wikipedia.org/wiki/FastCode
• Version 4, hence FastMM4

• Included in RAD Studio since version 2006
• http://www.tindex.net/Language/FastMMmemorymanager.html

• Much improved since
• Don’t use default FastMM, download the fresh one
• https://github.com/pleriche/FastMM4

https://en.wikipedia.org/wiki/FastCode
http://www.tindex.net/Language/FastMMmemorymanager.html
https://github.com/pleriche/FastMM4

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

FEATURES

• Fast
• Fragmentation resistant
• Access to > 2GB
• Simple memory sharing
• Memory leak reporting
• Catches some memory-related bugs

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

PROBLEMS

• Can be slow in a multithreaded environment

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

INTERNALS

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

TOP VIEW

• Three memory managers in one

• Small blocks (< 2,5 KB)
• Most frequently used (99%)
• Medium blocks, subdivided into small blocks

• Medium blocks (2,5 – 260 KB)
• Allocated in chunks (1,25 MB) and subdivided into lists

• Large blocks (> 260 KB)
• Allocated directly by the OS

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

DETAILS

• One large block allocator
• One medium block allocator
• Multiple (54+2) small block allocators

• SmallBlockTypes
• Custom, optimized Move routines (FastCode)

• Each allocator has its own lock
• If SmallAllocator is locked, SmallAllocator+1 or SmallAllocator+2

is used

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

REASONS FOR SLOWDOWN

• Threads are fighting for allocators

• Solution – Change the program
• Hard to find out the problematic code

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

DEMO

• Steve Maughan
http://www.stevemaughan.com/delphi/delphi-parallel-programming-
library-memory-managers/

• Redesigned to use OmniThreadLibrary

http://www.stevemaughan.com/delphi/delphi-parallel-programming-library-memory-managers/

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

DIAGNOSING FASTMM
BOTTLENECKS

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

FASTMM4 LOCKING

if IsMultiThread then begin
while LockCmpxchg(0, 1, @MediumBlocksLocked) <> 0 do begin

{$ifdef NeverSleepOnThreadContention}
{$ifdef UseSwitchToThread}

SwitchToThread; //any thread on the same processor
{$endif}
{$else}

Sleep(InitialSleepTime);//0;any thread that is ready to run
if LockCmpxchg(0, 1, @MediumBlocksLocked) = 0 then

Break;
Sleep(AdditionalSleepTime); //1; wait

{$endif}
end;

end;

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

LOCK CONTENTION LOGGING

LockMediumBlocks({$ifdef LogLockContention}LDidSleep{$endif});

ACollector := nil;
{$ifdef LogLockContention}
if LDidSleep then

ACollector := @MediumBlockCollector;
{$endif}

if Assigned(ACollector) then begin
GetStackTrace(@LStackTrace, StackTraceDepth, 1);
ACollector.Add(@LStackTrace[0], StackTraceDepth);

end;

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

FASTMM4DATACOLLECTOR

• Opaque data
• Completely static

• Can’t use MM inside MM
• Agreed max data size

• Most Frequently Used
• Generational

• Reduce the problem of local maxima
• Two generations, sorted
• Easy to expand to more generations

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

OUTPUT

• Results for all allocators are merged

• Top 10 call stacks are written to
<programname>_MemoryManager_EventLog.txt

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

FINDINGS

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

IT IS HARD TO RELEASE MEMORY

• GetMem does not represent a problem
• It can (with small blocks) upgrade to unused allocator
• One thread doesn‘t block another

• Time is mostly wasted in FreeMem
• FreeMem must use allocator that produced the memory
• One thread blocks another

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

SOLUTION

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

PARTIAL SOLUTION

• If allocator is locked, delay the FreeMem
• Memory block is pushed on a ‘to be released’ stack
• Each allocator gets its own “release stack”

while LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) <> 0 do begin
{$ifdef UseReleaseStack}
LPReleaseStack := @LPSmallBlockType.ReleaseStack;
if (not LPReleaseStack^.IsFull) and LPReleaseStack^.Push(APointer) then
begin
Result := 0;
Exit;

end;
{$endif}

• When allocator is successfully locked, all memory from its release stack is released.

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

FASTMM4LOCKFREESTACK

• Very fast lock-free stack implementation
• Taken from OmniThreadLibrary

• Windows only
• Dynamic memory

• Allocated at startup
• Uses HeapAlloc for memory allocation

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

PROBLEMS

• Release stacks work, but not perfectly

1.FreeMem can still block if multiple threads are releasing similarly sized
memory blocks.
• Solution: Hash all threads into a pool of release stacks.

2. Somebody has to clean after terminated threads.
• Solution: Low-priority memory release thread.
• Currently only for medium/large blocks.
• CreateCleanupThread/DestroyCleanupThread

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

FULL SOLUTION?

while LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) <> 0 do
begin
{$ifdef UseReleaseStack}

LPReleaseStack := @LPSmallBlockType.ReleaseStack[GetStackSlot];
if (not LPReleaseStack^.IsFull) and LPReleaseStack^.Push(APointer)
then begin

Result := 0;
Exit;

end;
{$endif}

• GetStackSlot hashes thread ID into [0..NumStacksPerBlock-1] range

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

BUNCH OF RELEASE STACKS!

• 56 + 1 + 1 allocators, each with 64 release stacks
• Each release stack is very small
• 36 static bytes
• 88 dynamic bytes (16 pointers per stack)

• In 32-bit world
• 58 * 64 * (36 + 88) = 460 KB

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

IMPROVE YOUR CODE

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

DEPLOYMENT

• Main FastMM repository
• https://github.com/pleriche/FastMM4

• Define LogLockContention
or

• Define UseReleaseStack

• Rebuild

https://github.com/pleriche/FastMM4

CodeRage XI – Productivity, Platforms and Performance – embt.co/CodeRageXI

Q & A
Slides and code are available at

http://thedelphigeek.com/p/presentations.html

