
CONTINUOUS INTEGRATION, 

DELIVERY & DEPLOYMENT
ONE CLICK DELIVERY



QUICK POLL



SAFE?

Are you using version control?



QUICK?

Can you release new version of 

your software in one day?



QUICK AND SAFE?

Can you release new, well-

tested version of your software 

in one day?



DEVELOPMENT NOW



DEVELOPMENT NOW

 Each developer has feature branches

 If the version control is used at all

 Features are deployed when completed

 Integration issues

 Small test suite



PROBLEMS

 Bringing software into production is hard

 Takes a lot of time

 Error prone



SOLUTION – CONTINUOUS 

INTEGRATION



CONTINUOUS INTEGRATION?

“Continuous Integration is a software development

practice where members of a team integrate their work

frequently, usually each person integrates at least daily

- leading to multiple integrations per day. Each

integration is verified by an automated build (including

test) to detect integration errors as quickly as possible.”

- Martin Fowler



CHANGE THE WORKFLOW!

 Checkout/update

 Code

 Build & test locally

 Update (merge)

 Retest if changed

 Commit

 Continuous Integration server takes over …



CHANGE THE VERSIONING!

 No ‘feature’ branches

 Temporary ‘developer’ branches

 Good to test crazy ideas

 Branch and throw away

 Trunk must always compile

 Avoid big scary merges



HOW TO HANDLE FEATURES

 No ‘feature’ branches

 Features can be toggled on and off via deployment or 

compilation configuration

 Also helps with Continuous Delivery/Deployment

 Keep features small

 Improve features interactively

 Introduce early, then improve



SIDENOTE – VERSION CONTROL SYSTEMS

 History

 Log

 Blame

 Revert to version

 Bug-finding tool

 Branches

 Tag/mark every release

 Always use VCS – even for single-person projects!







TESTING

 Automate everything

 If it hurts, do it more often. Continuously.

 Fail fast.

 Integration testing

 Unit testing

 Functional testing

 Application testing

 Mobile testing

 Whatever you don’t test against, will happen



REQUIREMENTS



REQUIREMENTS

 Source code repository (version control)

 Subversion, Git, Mercurial, …

 Project build

 MSBuild

 FinalBuilder

 …

 Testing

 TestComplete

 Continuous Integration server



CI SERVER IN ESSENCE

while true do
begin

if change_checked_into_vcs then
begin

if not build then

report_error;

if not test then

report_error;

end;

sleep;

end;



CI SERVERS

 Continua CI

 VSoft (FinalBuilder)

 Jenkins

 Hudson fork

 Java

 Commercial support - Cloudbees

 CruiseControl.Net

 XML configuration :(



PROJECT MONITORING



CI RECOMMENDATION

 Use a separate server (or VM)

 For CI, or

 For CI + build, or

 For CI + build + test



CENTRAL DOGMA

 Build early, build often

 On every checkin

 Check in early, check in often



BENEFITS



BENEFITS

 Brings order into chaos

 Everything could be achieved without the Continuous 

Integration, but …

 CI is the great enforcer



BENEFITS

 Code is always in the consistent state

 Code always compiles

 Automatic tests

 Automatic feedback on product readiness



CODE ALWAYS COMPILES



CODE ALWAYS COMPILES

 Code should always build and test.

→ Continuous Delivery



CONTINUOUS DELIVERY



CONTINUOUS DELIVERY?

“The essence of my philosophy to software delivery
is to build software so that it is always in a state
where it could be put into production. We call
this Continuous Delivery because we are 
continuously running a deployment pipeline that
tests if this software is in a state to be delivered.”

– Jez Humble, Thoughtworks



CI <> CD

 CD = CI + fully automated test suite

 Not every change is a release

 Manual trigger

 Trigger on a key file (version)

 Tag releases!

 CD – It is all about testing!



CONSIDER THIS

“How long would it take your organization 

to deploy a change that involves just one 

single line of code?”

- Mary and Tom Poppendieck, 

Implementing Lean Software Development



CONT. DELIVERY VS. DEPLOYMENT

build
unit

tests

integration

tests

validation

tests

deploy to

production

build
unit

tests

integration

tests

validation

tests

deploy to

production

Continuous Delivery

Continuous Deployment

MANUAL

AUTO



CONTINUOUS DEPLOYMENT



CONTINUOUS DEPLOYMENT



A WORD OF WARNING

 Continuous integration is simple.

 Continuous delivery is doable. 

 Continuous deployment is a hard problem.



DEPLOYMENT SCHEDULE

 Release when a feature is complete

 Release every day



DEPLOYMENT STRATEGIES

 Zero-downtime deployment (and rollback)

 Blue-green

 Two environments

 Install on one. Switch. Switch back on problems.

 Canary release

 Deploy to subset of servers

 Real-time application state monitor!



PROBLEMS

 Technical

 Databases

 Schema migration

 Revert!

 Change management software

 Configuration

 Human

 Even more important

 Automatic deployment = great fear

 Customers don’t want software to constantly change



TRANSITION



HOW TO INTRODUCE

 (Introduce VCS)

 Gain expertise

 First step accomplished – you are here

 Automate the build

 Introduce tests

 Prove the concept

 Introduce CI system

 Run it in parallel to existing infrastructure

 Give it time

 Show the win-win



NOTES FROM THE FIELD



WHAT WE FOUND

 Continuous Integration is relatively easy

 It is all about communication

 Continuous Delivery is harder (but we are getting there)

 Some things are hard to test automatically

 You need dedicated test-writers

 Continuous Deployment is not a requirement

 Customers don’t want it

 Only for mission critical systems



SIDENOTE - VCS RULES!

 Disks are large, store as much as possible in the VCS

 Continuous Integration server configuration should be 

stored in the VCS

 You should be able to restore complete build system 

from the VCS (after installing necessary software)



IMPLEMENTATION

 Run everything in VM

 Backup!



CONTINUOUS 

INTEGRATION/DELIVERY/DEPLOYMENT

It is all about the people!



SOFTWARE

 Continua CI

http://www.finalbuilder.com/continua-ci

 Jenkins

http://jenkins-ci.org

 CruiseControl.NET

http://www.cruisecontrolnet.org

https://www.finalbuilder.com/continua-ci
http://jenkins-ci.org/
http://www.cruisecontrolnet.org/


BOOKS

 Continuous Delivery

http://www.amazon.com/dp/0321601912

 Continuous Integration

http://www.amazon.com/dp/0321336380

 Implementing Lean Software Development

http://www.amazon.com/dp/0321437381

 Release It!

http://pragprog.com/book/mnee/release-it

http://www.amazon.com/dp/0321601912
http://www.amazon.com/dp/0321336380
http://www.amazon.com/dp/0321437381
http://pragprog.com/book/mnee/release-it


REFERENCES

 http://en.wikipedia.org/wiki/Continuous_integration

 http://en.wikipedia.org/wiki/Continuous_delivery

 http://martinfowler.com/articles/continuousIntegration.html

 http://continuousdelivery.com

 http://www.hassmann-software.de/en/continuous-integration-hudson-subversion-delphi/

 http://edn.embarcadero.com/article/40962

 http://thundaxsoftware.blogspot.com/2011/07/continuous-integration-for-your-delphi.html

 http://nickhodges.com/post/Getting-Hudson-set-up-to-compile-Delphi-Projects.aspx

 https://www.finalbuilder.com/resources/blogs/postid/695/building-delphi-projects-with-

continua-ci

 http://smartbear.com/products/qa-tools/automated-testing-tools/

http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Continuous_delivery
http://martinfowler.com/articles/continuousIntegration.html
http://continuousdelivery.com/
http://www.hassmann-software.de/en/continuous-integration-hudson-subversion-delphi/
http://edn.embarcadero.com/article/40962
http://thundaxsoftware.blogspot.com/2011/07/continuous-integration-for-your-delphi.html
http://nickhodges.com/post/Getting-Hudson-set-up-to-compile-Delphi-Projects.aspx
https://www.finalbuilder.com/resources/blogs/postid/695/building-delphi-projects-with-continua-ci
http://smartbear.com/products/qa-tools/automated-testing-tools/


QUESTIONS?


