MULTITHREADING

FAST PROGRAMS FOR MODERN COMPUTERS




[. BASICS




= The art of doing multiple things at the same time



10000

1000
==Cores
100 wmifmm] CPU
e MHz
Moore

/ m

44— = 1
1995 1986 1897 1998 1999 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

© John Appleby, http://www.saphana.com/community/blogs/blog/2013/04/18



= TThread
= System.Threading [XE7]
= OmniThreadLibrary [Windows, VCL]



Slow background process

Background communication
Executing synchronous API
Multicore data processing

Multiple clients



THREADING

= A thread is a line of execution through a program

= There is always one thread

= Multitasking (and multithreading)
= Cooperative
= Win 3.x
= Preemptive
= Time slicing

= Parallel execution



PROCESSES VS. THREADS

= Pros
= Processes are isolated — data protection is simple
= Cons

= Processes are isolated — data sharing is complicated

= Processes are heavy, threads are /ight



PROBLEMS

= Data sharing
= Messaging
= Synchronization
= Synchronization causes
= Race conditions
= Deadlocking

= Livelocking

= Slowdown



FOUR PATHS TO MULTITHREADING - 1

= The Windows Way

= FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), O,
FThreadID);



FOUR PATHS TO MULTITHREADING - 2

= The Delphi Way

= Focus on threads

= TMyThread = class(TThread)
procedure Execute; override;



FOUR PATHS TO MULTITHREADING - 3

= The XE7 Way
= Focus on tasks
= task := TTask.Create(procedure begin ... end);
= future := TTask.Future<Integer>(function: Integer ...);

= TParallel.For(1, Max, procedure (I: Integer) ...);



FOUR PATHS TO MULTITHREADING - 4

= The OmniThreadLibrary Way

= task := CreateTask(worker, ‘name’);
= Async(procedure begin ... end).Await(procedure ...);

= Parallel.For(1, 100000).Execute(procedure (i: integer) ...);



THREAD VS. TASK

= 7askis part of code that has to be executed

s Threadis the execution environment



THREAD POOLING

= Starting up a thread takes time
= Thread pool keeps threads alive and waits for tasks

= Automatic thread startup/shutdown



DELPHI 2 — XE6 DEMO




THREAD CREATION/TERMINATION

= FThreadl :

TTestThreadl.Create;

® FThreadl.Terminate;
FThreadl.WaitFor;
FreeAndNil (FThreadl);

= FThread2

TTestThread2.Create(true);

FThread2.FreeOnTerminate := true;
FThread2.0nTerminate := ReportThreadTerminated;



WORKER

procedure TTestThreadl.Execute;
begin
while not Terminated do begin
// some real work could be done here
end;
end;




TTHREAD EXTRAS

CreateAnonymousThread
Synchronize, Queue
ReturnValue
FatalException

Handle, ThreadID, Priority



PROS AND CONS

= Pros

= Low-level approach offers full execution speed

= Multi-OS support

= Cons

= Offers no help to simplify multithreading programming



DELPHI XE7 DEMO




Encapsulates a task (a work to be done)

Runs in a thread pool

TTask.Create + ITask.Start

TTask.Run

[Task.Wait/TTask. WaitForAll/TTask.WaitForAny

No OnTerminate notification




FUTURE

= Performs a computation in background and returns a result
= TTask.Future<ReturnType>
= JFuture<ReturnType>.Value

= JFuture<ReturnType>.Status




PARALLEL FOR

= TParallel.For(lowBound, highBound, workerProc);

= Watch for shared memory access!




PROS AND CONS

= Pros
= Simple usage
= Hard parts are already implemented
= Multi-OS support
= Cons
= Limited functionality

= No messaging



I[I. DO's AND DON'T'S




SHARED MEMORY

= Read / Modify / Write
= Increment / Decrement

= Simultaneously reading and writing into a list
= TList, TStringList, TList<T>, ...

= Arrays are usually fine
= Don't access same element from two threads

= Element size >= SizeOf(pointer)




ATOMIC CHANGES

= SyncObjs
= Locking

= TCriticalSection
= TSpinLock

= TMultiReadExclusiveWriteSynchronizer / TMREWSync (SysUtils)

= “Interlocked” operations
= TInterlocked



PROBLEMS CAUSED BY LOCKING

= Deadlocks

= |ivelocks

= Slowdown



RTL

= SyncObjs
= TThreadList
= TThreadedQueue

= TMonitor

= Be careful!

= threadvar



COMMUNICATION




MECHANISMS

TEvent
Messages [Windows]

TCP

Shared memory (with atomic changes)

= Message queue



[II. OMNITHREADLIBRARY




OMNITHREADLIBRARY IS ...

= ... VCL for multithreading
= Simplifies programming tasks
= Componentizes solutions

= Allows access to the bare metal

= ... trying to make multithreading possible for mere
mortals

= ... providing well-tested components packed in
reusable classes with Aigh-/level parallel programming
support



http://www.omnithreadlibrary.com :
De|ph| 2007 = Parallel Programming
OpenBSD license i

Actively used
https://leanpub.com/omnithreadlibrary
http://otl.17slon.com/book

http://www.omnithreadlibrary.com/webinars.htm

Google+ community


http://www.omnithreadlibrary.com/
https://leanpub.com/omnithreadlibrary
http://otl.17slon.com/book
http://www.omnithreadlibrary.com/webinars.htm

INSTALLATION

= Checkout / Download + Unpack
= Add path & path/srcto search path

m yses Ot/*



ABSTRACTION LAYERS

= Low-level
= TThread replacement
= Similar to TTask [XE7]
= Communication
= High-level
= Requires Delphi 2009
= “Multithreading for mere mortals”

= 'Parallel for' and much more



LOW-LEVEL MULTITHREADING




CREATING A TASK

CreateTask(task _procedure)
CreateTask(task _method )
CreateTask(TOmnilWorker object)

CreateTask(anonymous procedure)




MESSAGING

= Messaging preferred to locking

= TOmniMessageQueue
= TOMmniQueue

= Dynamically allocated, O(1) enqueue and dequeue, threadsafe,
microlocking queue

= TOmniBlockingCollection

= TOmniValue



FLUENT PROGRAMMING

FHelloTask := CreateTask(TAsyncHello.Create(), 'Hello")
SetParameter('Delay’, 1000)
SetParameter('Message’, 'Hello")

.OnMessage(Self)
.OnTerminated(
procedure
begin
IbLog.Items.Add(‘'Terminated");
end)
.Run;




LOW-LEVEL CLASSES

= OtlTask = OtlContainers
= JOmniTask = TOmniBoundedStack
= OtlTaskControl = TOmniBoundedQueue
= [OmniTaskControl = TOmniQueue
= OtlCommon = OtlSync
= TOmniValue = TOmnICS
= Environment = TOmniIMREW

= Locked<T>



IV. HIGH-LEVEL
MULITHREADING




ABSTRACTIONS

= Async/Await

= Async

= Future

= ForEach / For

= Join

= Parallel task

= Background worker
= Pipeline

= Fork/Join



= Parallel.Async(code)

Async
(code)

code




ASYNC/AWAIT

= Simplified syntax
= Async(TProc).Await(TProc);




FUTURE

= Wikipedia

= "They (futures) describe an object that acts as a proxy for a
result that is initially not known, usually because the
computation of its value has not yet completed.”

= Start background calculation, wait on result.



FUTURE

= Future:=
Parallel.Future<type>
(calculation);

" Value := Future.Value;

Future
(code)

.Value

Result

' 4

code

\\}7




FOREACH / FOR

= Parallel.ForEach(from, to).Execute(
procedure (const value: integer);
begin
// .
end);

= Parallel.ForEach(source).Execute(
procedure (const value: TOmniValue) ..

= Parallel.ForEach<string>(source).Execute(
procedure (const value: string) ..



\

[
\

ForEach -~
(source, code)

Y
A

Optional




= Parallel.Join([taskl, task2, task3, ..
taskN]) .Execute

Join(codel,
code2, code3)

Y
Y
A

codel

L code2

code3

I_ — —
\\}7

\\}7

-




PARALLEL TASK

= Parallel.ParallelTask.Execute(code)

ParallelTask
(code)

-

I_ __
\\}7

\\}7




BACKGROUND WORKER

Sl B
S

code code code

= Client/Server




PIPELINE

= Parallel.Pipeline([stage1, stage?2, stage3]).Run

stage3

stage2

\\}7

\\}7




¥

Read

Compreass

Encrypt

Write

while <has data=

while <has data=

while <has data=

while <has data=

Compress

read <data> compress <data> [ encrypt <dataz write <data=
Time N
* Read
Read
Compress
CQueue
Compress
Encrypt
Write

Encrypt
Queue

while <has data>
read <data>
insert <data> into <compress queue>

while read <compress queue>
compress <data>
insert <data> into <encrypt queue>

while read <encrypt queue>
encrypt <data>
insert <data> into <write queue>

while read <write queue>
write <data>

— Encrypt

Write
Quaue

Write




PIPELINE

var
pipeOut: IOmniBlockingCollection;

pipeOut := Parallel.Pipeline
.Stage(StageGenerate)
.Stage(StageMult2)
.Stage(StageSum)
.Run;




FORK/JOIN

= Divide and Conquer .-------------/°°mp“taﬁ°” P ———

| pool
| T
| - ! ~
| ~ J ~
I // | \\
] - | ~
P ~
e | ~N
- Z = \ ~
> T > T ]
v v v
code code code
ForkJoin | | I
(code) - L

\\}7
\\}7
\\}7



FORK/JOIN

maxl := forkJoin.Compute(
function: integer begin
Result := ..
end);
maxl := forkJoin.Compute(
function: integer begin
Result := ..
end) ;

Result := Max(maxl.Value, max2.Value);




WORDS OF (HARD LEARNED) WISDOM




WORDS OF WISDOM

“‘New programmers
are drawn to multithreading
like moths to flame,
with similar results.”

- Danny Thorpe



KEEP IN MIND

Never use VCL from a background thread!
Don't parallelize everything

Don’t create thousands of threads
Rethink the algorithm

Prove the improvements

Test, test and test



BE AFRAID

Designing parallel solutions is hard
Writing multithreaded code is hard
Testing multicore applications is hard

Debugging multithreading code is pure insanity
= Debugging high-level abstractions is just hard



QUESTIONS?




