
CPU PROFILING
FIND THE BOTTLENECK



WHAT? WHEN? HOW?



WHAT IS PROFILING?

 A form of dynamic analysis that measures some aspect 

of the program execution, typically:

 Memory usage

 Resource usage

 Frequency and duration of function calls



WHEN TO PROFILE?

“We should forget about small efficiencies, say about 

97% of the time: premature optimization is the root of 

all evil. Yet we should not pass up our opportunities in 

that critical 3%.” 

- Donald Knuth



TOOLS

 “Optimization by guesswork” – bad!

 Hardcoded time measurement and logging

 Profilers



PROFILERS

 Sampling (statistical)

 Instrumenting

 Source instrumenting

 Code instrumenting

 (Event based)

 (Hypervisor)



TOOLS



AQTIME

 http://smartbear.com/products/qa-tools/application-
performance-profiling/

 Delphi, C++ Builder, .NET (incl. Silverlight), Java …

 Integration with RAD Studio and Visual Studio – D2006 
and newer

 32- and 64- bit

 Comes with XE7 and previous (limited version)

 Additional downloads for registered users

 539 €

http://smartbear.com/products/qa-tools/application-performance-profiling/


AQTIME

 Performance profiler

 Allocation (memory) profiler

 Coverage profiler

 Static analysis profiler

 Load library tracer profiler

 More …



PRODELPHI

 www.prodelphi.de

 Delphi 5 – XE7

 32- and 64- bit

 Very precise profiling

 Free version (20 procedures)

 Separate Ansi and Unicode version

 Separate 32- and 64- bit version

 50 – 90 €



SAMPLING PROFILER

 http://delphitools.info/samplingprofiler

 Delphi 5 – XE4 (officially), works with XE7

 Measures time spent in OS DLLs

 Works at line level

 Real-time monitor

 Free

http://delphitools.info/samplingprofiler


ASMPROFILER

 https://code.google.com/p/asmprofiler/

 Sampling profiler

 Instrumenting profiler

 Add _uAsmProfDllLoader to program

 Usually more accurate results than Sampling Profiler

 Free

 Not limited to Delphi

https://code.google.com/p/asmprofiler/


DIY

 Home-brewed timing and logging

 GetTickCount

 Now

 timeGetTime

 QueryPerformanceCounter

 RDTSC



FIXING PERFORMANCE PROBLEMS



FIXING PERFORMANCE PROBLEMS

 Better algorithm 

 Less memory allocations

 Less string manipulations

 Using different Windows controls

 Faster code 

 Code optimization

 Handcrafted assembler; using MMX/SSE

 Assembler tricks will not make up for bad design, 

however, they can make good design go faster.



PROFILER FAIL

 Distributed algorithms (GUI, messaging) are hard to 

profile

 Optimizing the inner code of an infinite loop doesn’t 

help

 If time is spent in kernel, reason may be hard to find



HANDS-ON!



QUESTIONS?


