
CPU PROFILING
FIND THE BOTTLENECK



WHAT? WHEN? HOW?



WHAT IS PROFILING?

 A form of dynamic analysis that measures some aspect 

of the program execution, typically:

 Memory usage

 Resource usage

 Frequency and duration of function calls



WHEN TO PROFILE?

“We should forget about small efficiencies, say about 

97% of the time: premature optimization is the root of 

all evil. Yet we should not pass up our opportunities in 

that critical 3%.” 

- Donald Knuth



TOOLS

 “Optimization by guesswork” – bad!

 Hardcoded time measurement and logging

 Profilers



PROFILERS

 Sampling (statistical)

 Instrumenting

 Source instrumenting

 Code instrumenting

 (Event based)

 (Hypervisor)



TOOLS



AQTIME

 http://smartbear.com/products/qa-tools/application-
performance-profiling/

 Delphi, C++ Builder, .NET (incl. Silverlight), Java …

 Integration with RAD Studio and Visual Studio – D2006 
and newer

 32- and 64- bit

 Comes with XE7 and previous (limited version)

 Additional downloads for registered users

 539 €

http://smartbear.com/products/qa-tools/application-performance-profiling/


AQTIME

 Performance profiler

 Allocation (memory) profiler

 Coverage profiler

 Static analysis profiler

 Load library tracer profiler

 More …



PRODELPHI

 www.prodelphi.de

 Delphi 5 – XE7

 32- and 64- bit

 Very precise profiling

 Free version (20 procedures)

 Separate Ansi and Unicode version

 Separate 32- and 64- bit version

 50 – 90 €



SAMPLING PROFILER

 http://delphitools.info/samplingprofiler

 Delphi 5 – XE4 (officially), works with XE7

 Measures time spent in OS DLLs

 Works at line level

 Real-time monitor

 Free

http://delphitools.info/samplingprofiler


ASMPROFILER

 https://code.google.com/p/asmprofiler/

 Sampling profiler

 Instrumenting profiler

 Add _uAsmProfDllLoader to program

 Usually more accurate results than Sampling Profiler

 Free

 Not limited to Delphi

https://code.google.com/p/asmprofiler/


DIY

 Home-brewed timing and logging

 GetTickCount

 Now

 timeGetTime

 QueryPerformanceCounter

 RDTSC



FIXING PERFORMANCE PROBLEMS



FIXING PERFORMANCE PROBLEMS

 Better algorithm 

 Less memory allocations

 Less string manipulations

 Using different Windows controls

 Faster code 

 Code optimization

 Handcrafted assembler; using MMX/SSE

 Assembler tricks will not make up for bad design, 

however, they can make good design go faster.



PROFILER FAIL

 Distributed algorithms (GUI, messaging) are hard to 

profile

 Optimizing the inner code of an infinite loop doesn’t 

help

 If time is spent in kernel, reason may be hard to find



HANDS-ON!



QUESTIONS?


