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Professional path
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HP 41C, ZX Spectrum [HiSoft Pascal], PDP-11

® 199x  university, Monitor magazine
CP/M [Turbo Pascal 3+], VAX/VMS [VAX Pascal, Perl],
DOS [Turbo/Borland Pascal 4+], OS/2, Windows [Delphi 2]

® 20xx  The Delphi Magazine, Blaise Pascal Magazine, The Delphi Geek,
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R&D Manager @ FAB: high-performance parallel systems
Windows [Delphi, JavaScript, Python]




The Delphi Geek

random ramblings on Delphi, programming, Delphi programming, and all the rest

Wednesday, June 21, 2023

Delphi High Performance, encore!

It is so interesting to publish a book for the second time. In a way it is similar to reviewing and fixing old code--you go
from "well said, old manl” to a "what the #5%! were you thinking when you wrote that" in a matter of pages. It also
helps if you depairprogramming have great technical reviewers that help by pointing out the latter and add frequent
"this may be obvious to you but | have no idea what you've just said" comments.

Big thanks go to Bruce McGee and Stefan Glienke for improving this bookl! It would be waorth at least a half "star” less
without them.
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Multithreading

Prologue




From one to many

® Single-tasking

Task A

Task B

Task C




From one to many

® Single-tasking :"St’;
as

¢ Multi-tasking Task C

® Cooperative :ztz

® Preemptive Task A

Task C




From one to many

® Single-tasking Iast;\j::fea:i
as rea
g MUlti'taSking Task C/thread 2

Task B/ thread 2

® Cooperative
Task B / thread 2

- :
Pl’eemptlve Task A/ thread 2

Task C/ thread 2

® Multi-threading
® Single CPU




® Single-tasking
® Multi-tasking
® Cooperative
¢ Preemptive
® Multi-threading
® Single CPU
® Multiple CPUs

From one to many

Task A / thread 1
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Processes vs. threads

Process Thread
® A collection of program’s resources ¢ Execution state
® Allocated memory ® Execution address
® File handles ® CPUregisters
® Sockets ® Stack
¢ Ulelements
¢ Memory & resource protection ® Memory & resource sharing

¢ “Heavy” ® “Light”




Why?

® Responsiveness (non-blocking Ul)

® Faster program execution
® Handling multiple clients

® Faster data processing




How?

® 0OS

® CreateThread, pthread_create ...
® Compiler

¢ async...await [.NET ...]

¢ RTL
® BeginThread, TThread




Problems!

° :
Sharlng data FData: integer;

® Simultaneous writing
FData := FData + 1; FData := FData + 1;

tmp := FData; tmp := FData;
tmp = tmp + 1; tmp = tmp + 1;
FData := tmp; FData := tmp;




Problems!

: .
Sharing data FData: TList<T>;

® Simultaneous writin
J for var t in FData do FData.Delete(0);

® Simultaneous reading and writing Process(t);

FData.Add(t);




Problems!

® Sharing data
® Simultaneous writing
® Simultaneous reading and writing

® Creating/destroying shared
objects/interfaces

FLazy: TLazy,;

FLazy := TLazy.Create,

if not assigned(FLazy)
then
FLazy := TLazy.Create;

FLazy := TLazy.Create;

if not assigned(FLazy)
then
FLazy := TLazy.Create;



Problems!

function TStream.GetSize: Int64;

® Sharing data var
Pos: Int64;
® Simultaneous writing begin

Pos := Seek(o, soCurrent);
Result := Seek(o, soEnd);
® Creating/destroying shared Seek(Pos, soBeginning);

objects/interfaces end;

® Hidden behaviour

® Simultaneous reading and writing

function TCustomMemoryStream.Seek(const Offset: Int64;
Origin: TSeekOrigin): Int64;
begin
case Origin of
soBeginning: FPosition := Offset;
soCurrent: Inc(FPosition, Offset);
soEnd: FPosition := FSize + Offset;
end;
Result := FPosition;
end;




Solutions

‘ Synchronlzatlon (|0Ckmg) Fcs: TCriticalSection;
Fdata: integer;
Fcs.Acquire; Fcs.Acquire;
try try
FData := FData + 1; FData := FData + 1;
finally finally
Fcs.Release; Fcs.Release;

end; end;




Solutions

¢ Synchronization (|0Cking) Fcs: TCriticalSection;

Fdata: integer;
® Not enforced! &

Fcs.Acquire; FData := FData + 1;
try

FData := FData + 1,
finally

Fcs.Release;
end;




Solutions

¢ Synchronization (|0Cking) Fcsl: TCriticalSection;

Fcs2: TCriticalSection;
® Not enforced!

Fcsl.Acquire; Fcs2.Acquire;
® Deadlocks Fcs2.Acquire; Fcsl.Acquire;




Solutions

® Synchronization (locking)
® Not enforced!
® Deadlocks

® Slower execution

® Keep locked areas as short as possible!




Solutions

. . .
Synchronization (locking) FData: integer;

o :
Interlocked operatlons AtomicIncrement(FData); AtomicIncrement(FData);

® Atomiclncrement [System]

® InterlockedIncrement [Windows]

® Tinterlocked.Increment [SyncObjs]




Solutions

. . .
Synchronization (locking) FData: integer;

o ,
Interlocked operations AtomicIncrement(FData); Inc(FData);

® Not enforced!




Solutions

® Synchronization (locking)

® Interlocked operations
® Not enforced!
® Faster
® Limited

® Hard to use




® Extremely hard to test

Testing

® “Infinite” possible interactions between threads

® Stress-testing

tmp
tmp
FData

FData: integer;

:= FData;
= tmp + 1;

:= tmp;

tmp
tmp
FData

:= FData;
= tmp + 1;

:= tmp;



Alternatives

® Multiprocessing
¢ OpenMP

¢ GPU
¢ OpenCL
¢ C/C++

® Clusters, grids, networks




Threads

Act 1 - Past




Threads

Delphi 2
BeginThread

TThread
® Start thread / Main thread loop / Terminate thread

Synchronization

® OS: Critical section, Mutex, Semaphore, Event



Problems

Multithreaded code written “from scratch”
1000 different ways and 10002 different bugs
No support for communication

Very limited support for synchronization



Tasks

Act 2 - Present




Tasks

® .NET 4 Task Parallel Library

® Tasks, Concurrent Collections, Cancellation, Parallel For, LINQ

® C# async/await

® Thread = operating system concept
® You tell the system how to do the work

® Usually: A new thread each time

® Task = part of code

® You tell the library what you want to execute in parallel

® Usually: threads come from a thread pool

® Reason: thread creation takes time



Synchronization mechanisms

® RTL
® TMonitor

® Spin-lock each object
® TThread.Synchronize
¢ 0S
® Readers/writer [SRW, pthread_rwlock]
® Condition variables [TRTLConditionVariable, pthread_cond_t]




Communication mechanisms

OS messages [Windows]
TThread.Queue, ForceQueue ® Locking + shared list

Polling

|OmniBlockingCollection ® Interlocked + shared lists

Locking is acceptable here

® Too slow? Reduce number of messages!



o

Shared data

Input preparation

Synchronization vs. commu

Shared data

<:Synchronuaﬁon:> Thread Thread
input input

Thread 1 Thread 2 Thread 1 Thread 2
Local Local
= =

data
Thread Thread
output output

Synchronuanon

Result aggregation

Result

Shared result




Synchronization vs. commu |

Input preparation

Thread 1

Local
data

Thread
input

Thread
output

Thread 2

Local
data

Result aggregation

o

Shared data

Input preparation

Thread Thread
input input
Thread 1 Thread 2
Local Local
data data
Thread Thread
output output

Result aggregation

Result




Patterns

Act 3 - Future




Patterns

Pre-packaged solutions to frequent problems

All thread/task management is hidden behind a facade pattern

Stop caring about task management, focus on the problem
Pick a right pattern and write single-threaded code; library will do the rest

Your code is testable; library is as simple as possible and well-tested




Patterns

® Parallel Programming Library

® OmniThreadLibrary




Async/Await

® Execute code in a worker thread

® Optionally execute more code in the main thread
after that is done

® Async(
procedure begin
DoBackgroundWork;
end)

.Await(

procedure begin
UpdateUI;

end)

Async
(code)

A\ 4

code




Async

® TThread.CreateAnonymousThread

® multithreadprocs [ threadPool.DoParallel




Future

® Start background calculation,
later retrieve the result

FCalculation := TTask.Future<integer>(Calculate);

ShowResult(FCalculation.Value);

FCalculation := nil;

Future
(code)

\Value

Result

A\ 4

code

\\}7




Parallel For

® Iterate over a range

in parallel el > > >

code code code
| — !
® TParallel.For(1l, 1000, : : |
procedure(i: integer) | : |
begin : | i
ProcessIndex(i); Il ' -

end) ; - |

® Simple but dangerous!




Parallel For

for 1 := 2 to CHighestNumber do
if IsPrime(i) then
Inc(count);

TParallel.For(2, CHighestNumber,
procedure (i: integer)
begin
if IsPrime(i) then
Inc(count);
end);




Parallel For

for 1 := 2 to CHighestNumber do
if IsPrime(i) then
Inc(count);

TParallel.For(2, CHighestNumber,
procedure (i: integer)
begin
if IsPrime(i) then
Ine{eount)s
TInterlocked.Increment(count);
end);




Background Worker

Schedule

® Start a background data processing

server, optionally running on
multiple threads

— — 9
OnRequestDoneI(

code




Background Worker

FBackgroundWorker := Parallel.BackgroundWorker.NumTasks(2)

.Execute(
procedure (const workItem: IOmniWorkItem)
begin
workItem.Result := ProcessData(workItem.Data);
end )
.OnRequestDone(

procedure (const Sender: IOmniBackgroundWorker;
const workItem: IOmniWorkItem)

begin
DisplayResult(workItem.Result);

end;




Pipeline

® Process data in multiple (overlapping) stages

Time o
Read Compress Encrypt Write while <has data>
read <data> compress queue>
while <has data> |while <has data> |while <has data> |while <has data> <data>
read <data> compress <data>| encrypt<data> | write <data> compress ata ueue>
encrypt <data> |
write <data>
Time - encrypt queue>
Read while read <encrypt queue>
encrypt <data>
Compress insert <data> into <write queue>
e o while read <write queue>
write <data>
Write




Pipeline

® Process data in multiple (overlapping) stages

Pipeline(source,
stagel, stage2,
stage3)

B e R ‘"’ ““*
i stage2

stage3

\\}7

N e e e e e e et 2 = !

® Pipeline.Stage(Reader).Stage(Compressor).Stage(Encryptor).Stage(Writer).Run



Just one more thing

Prologue




Remember!

® Access shared data in tight, well-tested code
® Use well-tested libraries, data duplication and communication!

® When in doubt, write single-threaded code!

“‘New programmers

are drawn to multithreading
like moths to flame,

with similar results.”

-Danny Thorpe

Chief Scientist for Windows and .NET developer tools at Borland
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