Parallel programming
In Pascal

Primoz Gabrijelcic

About me

programmer, MVP, writer, blogger, consultant, speaker

Blog http://thedelphigeek.com

Twitter @thedelphigeek
Skype gabr42

Linkedin gabrs2

GitHub gabr42

SO gabr

http://thedelphigeek.com/

Professional path

® 198x high school
HP 41C, ZX Spectrum [HiSoft Pascal], PDP-11

® 199x university, Monitor magazine
CP/M [Turbo Pascal 3+], VAX/VMS [VAX Pascal, Perl],
DOS [Turbo/Borland Pascal 4+], OS/2, Windows [Delphi 2]

® 20xx The Delphi Magazine, Blaise Pascal Magazine, The Delphi Geek,
books (Packt Publishing, self-published)

R&D Manager @ FAB: high-performance parallel systems
Windows [Delphi, JavaScript, Python]

The Delphi Geek

random ramblings on Delphi, programming, Delphi programming, and all the rest

Wednesday, June 21, 2023

Delphi High Performance, encore!

It is so interesting to publish a book for the second time. In a way it is similar to reviewing and fixing old code--you go
from "well said, old manl” to a "what the #5%! were you thinking when you wrote that" in a matter of pages. It also
helps if you depairprogramming have great technical reviewers that help by pointing out the latter and add frequent
"this may be obvious to you but | have no idea what you've just said" comments.

Big thanks go to Bruce McGee and Stefan Glienke for improving this bookl! It would be waorth at least a half "star” less
without them.

N o

Parallel Programming Déélgn Patterns

ﬁ”’"’ with with Delphi
"OmniThreadLibrary

tumgw
Delphi
High Performance

Maoster the art of concurrency, parollel progromming, ond
memory monogement fo buld fost Defphl apps

PRINMOZ GABRIJELCIC a?,"ﬁelf'f

(Gmba

Pages

Presentations

Multithreading

Prologue

From one to many

® Single-tasking

Task A

Task B

Task C

From one to many

® Single-tasking :"St’;
as

¢ Multi-tasking Task C

® Cooperative :ztz

® Preemptive Task A

Task C

From one to many

® Single-tasking Iast;\j::fea:i
as rea
g MUlti'taSking Task C/thread 2

Task B/ thread 2

® Cooperative
Task B / thread 2

- :
Pl’eemptlve Task A/ thread 2

Task C/ thread 2

® Multi-threading
® Single CPU

® Single-tasking
® Multi-tasking
® Cooperative
¢ Preemptive
® Multi-threading
® Single CPU
® Multiple CPUs

From one to many

Task A / thread 1

Task A / thread 2

Task B/ thread 1

Task C/thread 1

Task C/ thread 2

Task A / thread 2

Task A / thread 2

Task B/ thread 2

Task B / thread 2

Task B/ thread 1

Task B/ thread 2

Task C/thread 1

Task A / thread 2

Task C/ thread 2

Processes vs. threads

Process Thread
® A collection of program’s resources ¢ Execution state
® Allocated memory ® Execution address
® File handles ® CPUregisters
® Sockets ® Stack
¢ Ulelements
¢ Memory & resource protection ® Memory & resource sharing

¢ “Heavy” ® “Light”

Why?

® Responsiveness (non-blocking Ul)

® Faster program execution
® Handling multiple clients

® Faster data processing

How?

® 0OS

® CreateThread, pthread_create ...
® Compiler

¢ async...await [.NET ...]

¢ RTL
® BeginThread, TThread

Problems!

° :
Sharlng data FData: integer;

® Simultaneous writing
FData := FData + 1; FData := FData + 1;

tmp := FData; tmp := FData;
tmp = tmp + 1; tmp = tmp + 1;
FData := tmp; FData := tmp;

Problems!

: .
Sharing data FData: TList<T>;

® Simultaneous writin
J for var t in FData do FData.Delete(0);

® Simultaneous reading and writing Process(t);

FData.Add(t);

Problems!

® Sharing data
® Simultaneous writing
® Simultaneous reading and writing

® Creating/destroying shared
objects/interfaces

FLazy: TLazy,;

FLazy := TLazy.Create,

if not assigned(FLazy)
then
FLazy := TLazy.Create;

FLazy := TLazy.Create;

if not assigned(FLazy)
then
FLazy := TLazy.Create;

Problems!

function TStream.GetSize: Int64;

® Sharing data var
Pos: Int64;
® Simultaneous writing begin

Pos := Seek(o, soCurrent);
Result := Seek(o, soEnd);
® Creating/destroying shared Seek(Pos, soBeginning);

objects/interfaces end;

® Hidden behaviour

® Simultaneous reading and writing

function TCustomMemoryStream.Seek(const Offset: Int64;
Origin: TSeekOrigin): Int64;
begin
case Origin of
soBeginning: FPosition := Offset;
soCurrent: Inc(FPosition, Offset);
soEnd: FPosition := FSize + Offset;
end;
Result := FPosition;
end;

Solutions

‘ Synchronlzatlon (|0Ckmg) Fcs: TCriticalSection;
Fdata: integer;
Fcs.Acquire; Fcs.Acquire;
try try
FData := FData + 1; FData := FData + 1;
finally finally
Fcs.Release; Fcs.Release;

end; end;

Solutions

¢ Synchronization (|0Cking) Fcs: TCriticalSection;

Fdata: integer;
® Not enforced! &

Fcs.Acquire; FData := FData + 1;
try

FData := FData + 1,
finally

Fcs.Release;
end;

Solutions

¢ Synchronization (|0Cking) Fcsl: TCriticalSection;

Fcs2: TCriticalSection;
® Not enforced!

Fcsl.Acquire; Fcs2.Acquire;
® Deadlocks Fcs2.Acquire; Fcsl.Acquire;

Solutions

® Synchronization (locking)
® Not enforced!
® Deadlocks

® Slower execution

® Keep locked areas as short as possible!

Solutions

. . .
Synchronization (locking) FData: integer;

o :
Interlocked operatlons AtomicIncrement(FData); AtomicIncrement(FData);

® Atomiclncrement [System]

® InterlockedIncrement [Windows]

® Tinterlocked.Increment [SyncObjs]

Solutions

. . .
Synchronization (locking) FData: integer;

o ,
Interlocked operations AtomicIncrement(FData); Inc(FData);

® Not enforced!

Solutions

® Synchronization (locking)

® Interlocked operations
® Not enforced!
® Faster
® Limited

® Hard to use

® Extremely hard to test

Testing

® “Infinite” possible interactions between threads

® Stress-testing

tmp
tmp
FData

FData: integer;

:= FData;
= tmp + 1;

:= tmp;

tmp
tmp
FData

:= FData;
= tmp + 1;

:= tmp;

Alternatives

® Multiprocessing
¢ OpenMP

¢ GPU
¢ OpenCL
¢ C/C++

® Clusters, grids, networks

Threads

Act 1 - Past

Threads

Delphi 2
BeginThread

TThread
® Start thread / Main thread loop / Terminate thread

Synchronization

® OS: Critical section, Mutex, Semaphore, Event

Problems

Multithreaded code written “from scratch”
1000 different ways and 10002 different bugs
No support for communication

Very limited support for synchronization

Tasks

Act 2 - Present

Tasks

® .NET 4 Task Parallel Library

® Tasks, Concurrent Collections, Cancellation, Parallel For, LINQ

® C# async/await

® Thread = operating system concept
® You tell the system how to do the work

® Usually: A new thread each time

® Task = part of code

® You tell the library what you want to execute in parallel

® Usually: threads come from a thread pool

® Reason: thread creation takes time

Synchronization mechanisms

® RTL
® TMonitor

® Spin-lock each object
® TThread.Synchronize
¢ 0S
® Readers/writer [SRW, pthread_rwlock]
® Condition variables [TRTLConditionVariable, pthread_cond_t]

Communication mechanisms

OS messages [Windows]
TThread.Queue, ForceQueue ® Locking + shared list

Polling

|OmniBlockingCollection ® Interlocked + shared lists

Locking is acceptable here

® Too slow? Reduce number of messages!

o

Shared data

Input preparation

Synchronization vs. commu

Shared data

<:Synchronuaﬁon:> Thread Thread
input input

Thread 1 Thread 2 Thread 1 Thread 2
Local Local
= =

data
Thread Thread
output output

Synchronuanon

Result aggregation

Result

Shared result

Synchronization vs. commu |

Input preparation

Thread 1

Local
data

Thread
input

Thread
output

Thread 2

Local
data

Result aggregation

o

Shared data

Input preparation

Thread Thread
input input
Thread 1 Thread 2
Local Local
data data
Thread Thread
output output

Result aggregation

Result

Patterns

Act 3 - Future

Patterns

Pre-packaged solutions to frequent problems

All thread/task management is hidden behind a facade pattern

Stop caring about task management, focus on the problem
Pick a right pattern and write single-threaded code; library will do the rest

Your code is testable; library is as simple as possible and well-tested

Patterns

® Parallel Programming Library

® OmniThreadLibrary

Async/Await

® Execute code in a worker thread

® Optionally execute more code in the main thread
after that is done

® Async(
procedure begin
DoBackgroundWork;
end)

.Await(

procedure begin
UpdateUI;

end)

Async
(code)

A\ 4

code

Async

® TThread.CreateAnonymousThread

® multithreadprocs [threadPool.DoParallel

Future

® Start background calculation,
later retrieve the result

FCalculation := TTask.Future<integer>(Calculate);

ShowResult(FCalculation.Value);

FCalculation := nil;

Future
(code)

\Value

Result

A\ 4

code

\\}7

Parallel For

® Iterate over a range

in parallel el > > >

code code code
| — !
® TParallel.For(1l, 1000, : : |
procedure(i: integer) | : |
begin : | i
ProcessIndex(i); Il ' -

end) ; - |

® Simple but dangerous!

Parallel For

for 1 := 2 to CHighestNumber do
if IsPrime(i) then
Inc(count);

TParallel.For(2, CHighestNumber,
procedure (i: integer)
begin
if IsPrime(i) then
Inc(count);
end);

Parallel For

for 1 := 2 to CHighestNumber do
if IsPrime(i) then
Inc(count);

TParallel.For(2, CHighestNumber,
procedure (i: integer)
begin
if IsPrime(i) then
Ine{eount)s
TInterlocked.Increment(count);
end);

Background Worker

Schedule

® Start a background data processing

server, optionally running on
multiple threads

— — 9
OnRequestDoneI(

code

Background Worker

FBackgroundWorker := Parallel.BackgroundWorker.NumTasks(2)

.Execute(
procedure (const workItem: IOmniWorkItem)
begin
workItem.Result := ProcessData(workItem.Data);
end)
.OnRequestDone(

procedure (const Sender: IOmniBackgroundWorker;
const workItem: IOmniWorkItem)

begin
DisplayResult(workItem.Result);

end;

Pipeline

® Process data in multiple (overlapping) stages

Time o
Read Compress Encrypt Write while <has data>
read <data> compress queue>
while <has data> |while <has data> |while <has data> |while <has data> <data>
read <data> compress <data>| encrypt<data> | write <data> compress ata ueue>
encrypt <data> |
write <data>
Time - encrypt queue>
Read while read <encrypt queue>
encrypt <data>
Compress insert <data> into <write queue>
e o while read <write queue>
write <data>
Write

Pipeline

® Process data in multiple (overlapping) stages

Pipeline(source,
stagel, stage2,
stage3)

B e R ‘"’ ““*
i stage2

stage3

\\}7

N e e e e e e et 2 = !

® Pipeline.Stage(Reader).Stage(Compressor).Stage(Encryptor).Stage(Writer).Run

Just one more thing

Prologue

Remember!

® Access shared data in tight, well-tested code
® Use well-tested libraries, data duplication and communication!

® When in doubt, write single-threaded code!

“‘New programmers

are drawn to multithreading
like moths to flame,

with similar results.”

-Danny Thorpe

Chief Scientist for Windows and .NET developer tools at Borland

	Slide 1: Parallel programming in Pascal
	Slide 2: About me
	Slide 3: Professional path
	Slide 4
	Slide 5: Multithreading
	Slide 6: From one to many
	Slide 7: From one to many
	Slide 8: From one to many
	Slide 9: From one to many
	Slide 10: Processes vs. threads
	Slide 11: Why?
	Slide 12: How?
	Slide 13: Problems!
	Slide 14: Problems!
	Slide 15: Problems!
	Slide 16: Problems!
	Slide 17: Solutions
	Slide 18: Solutions
	Slide 19: Solutions
	Slide 20: Solutions
	Slide 21: Solutions
	Slide 22: Solutions
	Slide 23: Solutions
	Slide 24: Testing
	Slide 25: Alternatives
	Slide 26: Threads
	Slide 27: Threads
	Slide 28: Problems
	Slide 29: Tasks
	Slide 30: Tasks
	Slide 31: Synchronization mechanisms
	Slide 32: Communication mechanisms
	Slide 33: Synchronization vs. communication
	Slide 34: Synchronization vs. communication
	Slide 35: Patterns
	Slide 36: Patterns
	Slide 37: Patterns
	Slide 38: Async/Await
	Slide 39: Async
	Slide 40: Future
	Slide 41: Parallel For
	Slide 42: Parallel For
	Slide 43: Parallel For
	Slide 44: Background Worker
	Slide 45: Background Worker
	Slide 46: Pipeline
	Slide 47: Pipeline
	Slide 48: Just one more thing
	Slide 49: Remember!

