
Parallel Programming Made Easy

Primož Gabrijelčič, primoz@gabrijelcic.org

www.thedelphigeek.com

Why and How

The End of Free Lunch

© Herb Sutter,
www.gotw.ca/publications/concurrency-ddj.htm

What we want

What we have

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Three Paths …

• The Delphi Way
– TMyThread = class(TThread)

• The Windows Way
– FHandle := BeginThread(nil, 0, @ThreadProc,
Pointer(Self), 0, FThreadID);

• The Lightweight Way (AsyncCalls)
– TAsyncCalls.Invoke(procedure begin
 DoTheCalculation;
end);

– andy.jgknet.de

http://andy.jgknet.de/

… Plus One

• The No-Fuss Way (OmniThreadLibrary)
– thread :=
TOmniFuture<integer>.Create(YourFunction);
// do some work
Show(thread.Value);

– otl.17slon.com

– code.google.com/p/omnithreadlibrary

– ... D2007/2009⇨ only 

http://otl.17slon.com/
http://code.google.com/p/omnithreadlibrary
http://code.google.com/p/omnithreadlibrary

When To Use

• Slow background process

• Background communication

• Executing synchronous API

• Multicore data processing

• Multiple clients

OmniThreadLibrary

OmniThreadLibrary is …

• … VCL for multithreading
– Simplifies programming tasks

– Componentizes solutions

– Allows access to the bare metal

• … trying to make multithreading
possible for mere mortals

• … providing well-tested components
packed in reusable classes with high-

level parallel programming support

Today„s Topic

• Futures

• Join

• Parallel for

Futures

• Wikipedia
– “They (futures) describe an object

that acts as a proxy for a result
that is initially not known, usually
because the computation of its value
has not yet completed.”

– Start background calculation, wait on result.

• How to use?
– Future :=
TOmniFuture<type>.Create(calculation);

– Query Future.Value;

Join

• “Fork and Wait”

• Similar to Future
– Start multiple background calculations

– Wait for all to complete

– No result is returned (directly)

• Two basic forms
– Join(task1, task2);

– Join([task1, task2, task3, … taskN]);

Parallel For

• A simple façade for terribly
complicated stuff

Parallel
 .ForEach(1, CMaxSGPrimeTest)
 .Execute(
 procedure (const value: integer)
 begin
 if IsPrime(value) then
 numPrimes.Increment;
 end);

Parting Notes

Be Afraid

• Be very afraid!

• Designing parallel solutions is hard

• Writing multithreaded code is hard

• Testing multicore apps is hard

• Debugging multithreading code is
pure insanity

Keep in Mind

• Don‟t parallelize everything

• Don‟t create thousands of threads

• Rethink the algorithm

• Prove the improvements

• Test, test and test

Q & A

