

Multithreading Made Simple with OmniThreadLibrary

Primož Gabrijelčič

Introduction

- ... VCL for multithreading
 - Simplifies programming tasks
 - Componentizes solutions
 - Allows access to the bare metal
- ... trying to make multithreading possible for mere mortals
- ... providing well-tested components packed in reusable classes with high-level parallel programming support
- ... parallel programming today!

- OpenBSD license
- Actively developed
 - 1008 commits
- Actively used
 - 2.0: 2710 downloads [in 7 months]
 - 2.1: 1187 downloads [in 3 months]
 - 2.2: current release, XE2 support
- Delphi 2007 and above; currently Win32 only

- Download last installation from the Google Code or checkout the SVN repository
 - code.google.com/p/omnithreadlibrary/
- Add installation folder and its src subfolder to the project search path or Win32 library path
- Add the OtlParallel unit to the uses list
- That's all folks!

- Win64
- FMX
- OS/X
- iOS?

OmniThreadLibrary basics

High-level multithreading

"New programmers are drawn to multithreading like moths to flame, with similar results."

-Danny Thorpe

- Designing parallel solutions is hard
- Writing multithreaded code is hard
- Testing multicore applications is hard
- Debugging multithreading code is pure insanity
- Debugging multithreading code is hard

RE ALL GONNA

- Async
 - start background task and continue
- Future
 - start background calculation and retrieve the result
- Join
 - start multiple background tasks and wait
- ParallelTask
 - start multiple copies of one task and wait

- ForEach
 - parallel iteration over many different containers
- Pipeline
 - run a multistage process
- Fork/Join
 - divide and conquer, in parallel
- Delphi 2009 required

• Parallel.Async(code)

- Future:=Parallel.Future<type>.
 (calculation);
- Query Future.Value;

 Parallel.Join([task1, task2, task3, ... taskN]).Execute

 Parallel.ParallelTask.Execute (code)


```
    Parallel.ForEach(from, to).Execute(

    procedure (const value: integer);
    begin
      //...
    end)

    Parallel.ForEach(source).Execute(

    procedure (const value: TOmniValue);
    begin
      //...
    end)
```


while <has data>
read <data>
insert <data> into <compress queue>

while read <compress queue> compress <data> insert <data> into <encrypt queue>

while read <encrypt queue> encrypt <data> insert <data> into <write queue>

while read <write queue> write <data>

Parallel.Pipeline([stage1, stage2, stage3]).
 Run

Divide and conquer

Multithreading is hard?

- Designing parallel solutions is hard
- Writing multithreaded code is hard
- Testing multicore applications is hard
- Debugging multithreading code is pure insanity
- Debugging multithreading code is hard

RE ALL GONNA

Questions?

