
Multithreading Made Simple with OmniThreadLibrary

Primož Gabrijelčič

Introduction

OmniThreadLibrary is …

• … VCL for multithreading
– Simplifies programming tasks

– Componentizes solutions

– Allows access to the bare metal

• … trying to make multithreading possible for
mere mortals

• … providing well-tested components packed in
reusable classes with high-level parallel
programming support

• … parallel programming today!

Project status

• OpenBSD license

• Actively developed

– 1008 commits

• Actively used

– 2.0: 2710 downloads [in 7 months]

– 2.1: 1187 downloads [in 3 months]

– 2.2: current release, XE2 support

• Delphi 2007 and above; currently Win32 only

Installation

• Download last installation from the Google Code

or checkout the SVN repository

– code.google.com/p/omnithreadlibrary/

• Add installation folder and its src subfolder to the

project search path or Win32 library path

• Add the OtlParallel unit to the uses list

• That’s all folks!

http://code.google.com/p/omnithreadlibrary/
http://code.google.com/p/omnithreadlibrary/
http://code.google.com/p/omnithreadlibrary/

Future

• Win64

• FMX

• OS/X

• iOS?

OmniThreadLibrary basics

Task vs. thread

Communication

High-level multithreading

Be afraid

“New programmers

are drawn to multithreading

like moths to flame,

with similar results.”

-Danny Thorpe

Why high-level approach?

• Designing parallel solutions is hard

• Writing multithreaded code is hard

• Testing multicore applications is hard

• Debugging multithreading

code is pure insanity

• Debugging multithreading code is hard

High-level multithreading

• Async

– start background task and continue

• Future

– start background calculation and retrieve the result

• Join

– start multiple background tasks and wait

• ParallelTask

– start multiple copies of one task and wait

High-level multithreading

• ForEach

– parallel iteration over many different containers

• Pipeline

– run a multistage process

• Fork/Join

– divide and conquer, in parallel

• Delphi 2009 required

Async

• Parallel.Async(code)

Async
(code)

code

Future

• Future:=Parallel.Future<type>.
 (calculation);

• Query Future.Value;

Future
(code)

code

.Value

Result

Join

• Parallel.Join([task1, task2,
task3, … taskN]).Execute

Join(code1,
code2, code3)

code1

code2

code3

ParallelTask

• Parallel.ParallelTask.Execute
 (code)

ParallelTask
(code)

code

code

code

ParallelFor

• Parallel.ForEach(from, to).Execute(
 procedure (const value: integer);
 begin
 //…
 end)

• Parallel.ForEach(source).Execute(
 procedure (const value: TOmniValue);
 begin
 //…
 end)

ParallelFor

ForEach
(source, code)

source

output

code code code

Optional

while <has data>
 read <data>
 compress <data>
 encrypt <data>
 write <data>

while <has data>
 read <data> into <read-buf>
 compress <read-buf> into <compress-buf>
 encrypt <compress-buf> into <encrypt-buf>
 write <encrypt-buf>

while <has data>
 read <data>
 insert <data> into <compress queue>

 read <data-c> from <compress queue>
 compress <data-c>
 insert <data-c> into <encrypt queue>

 read <data-e> from <encrypt queue>
 encrypt <data-e>
 insert <data-e> into <write queue>

 read <data-w> from <write queue>
 write <data-w>

while <has data>
 read <data>
 insert <data> into <compress queue>

while read <compress queue>
 compress <data>
 insert <data> into <encrypt queue>

while read <encrypt queue>
 encrypt <data>
 insert <data> into <write queue>

while read <write queue>
 write <data>

Pipeline example

Read

Compress

Encrypt

Write

Compress
Queue

Encrypt
Queue

Write
Queue

Pipeline

• Parallel.Pipeline([stage1, stage2, stage3]).

 Run

Pipeline(source,
stage1, stage2,

stage3)

stage1

stage2

stage3

source temp1 temp2

output

Fork/Join

• Divide and conquer

ForkJoin
(code)

computation
pool

code codecode

Multithreading is hard?

Why high-level approach?

• Designing parallel solutions is hard

• Writing multithreaded code is hard

• Testing multicore applications is hard

• Debugging multithreading

code is pure insanity

• Debugging multithreading code is hard

Questions?

