
How I Learned to Love
FastMM Internals

Primož Gabrijelčič

http://primoz.gabrijelcic.org

History

History

• Developed by Pierre LeRiche for the FastCode project
• https://en.wikipedia.org/wiki/FastCode

• Version 4, hence FastMM4

• Included in RAD Studio since version 2006
• http://www.tindex.net/Language/FastMMmemorymanager.html

• Much improved since
• Don’t use default FastMM, download the fresh one

• https://github.com/pleriche/FastMM4

https://en.wikipedia.org/wiki/FastCode
http://www.tindex.net/Language/FastMMmemorymanager.html
https://github.com/pleriche/FastMM4

Features

• Fast

• Fragmentation resistant

• Access to > 2GB

• Simple memory sharing

• Memory leak reporting

• Catches some memory-related bugs

Problems

• Can get slow in multithreaded environment

• Can get VERY slow in multithreaded environment

FastMM4 Internals

Top View

• Three memory managers in one

• Small blocks (< 2,5 KB)
• Most frequently used (99%)

• Medium blocks, subdivided into small blocks

• Medium blocks (2,5 – 260 KB)
• Allocated in chunks (1,25 MB) and subdivided into lists

• Large blocks (> 260 KB)
• Allocated directly by the OS

Details

• One large block allocator

• One medium block allocator

• Multiple (54+2) small block allocators
• SmallBlockTypes

• Custom, optimized Move routines (FastCode)

• Each allocator has its own lock
• If SmallAllocator is locked, SmallAllocator+1 or SmallAllocator+2 is used

Problem

• Multithreaded programs are slow?

• Threads are fighting for allocators.

• Easy to change the program to bypass the problem.
• Well, sometimes.

• Hard to find out the responsible code.

Demo

• Steve Maughan: http://www.stevemaughan.com/delphi/delphi-
parallel-programming-library-memory-managers/

• http://www.thedelphigeek.com/2016/02/finding-memory-allocation-
bottlenecks.html

http://www.stevemaughan.com/delphi/delphi-parallel-programming-library-memory-managers/
http://www.thedelphigeek.com/2016/02/finding-memory-allocation-bottlenecks.html

Diagnosing FastMM4 Bottlenecks
$DEFINE LogLockContention

FastMM4 Locking

if IsMultiThread then begin

while LockCmpxchg(0, 1, @MediumBlocksLocked) <> 0 do begin

{$ifdef NeverSleepOnThreadContention}

{$ifdef UseSwitchToThread}

SwitchToThread; //any thread on the same processor

{$endif}

{$else}

Sleep(InitialSleepTime); // 0; any thread that is ready to run

if LockCmpxchg(0, 1, @MediumBlocksLocked) = 0 then

Break;

Sleep(AdditionalSleepTime); // 1; wait

{$endif}

end;

end;

Lock Contention Logging

LockMediumBlocks({$ifdef LogLockContention}LDidSleep{$endif});

{$ifdef LogLockContention}

if LDidSleep then

ACollector := @MediumBlockCollector;

{$endif}

if Assigned(ACollector) then begin

GetStackTrace(@LStackTrace, StackTraceDepth, 1);

MediumBlockCollector.Add(@LStackTrace[0], StackTraceDepth);

end;

FastMM4DataCollector

• Opaque data

• Completely static
• Can’t use MM inside MM

• Agreed max data size

• Most Frequently Used

• Generational
• Reduce the problem of local maxima

• Two generations, sorted
• 1024 slots in Gen1

• 256 slots in Gen2

• Easy to expand to more generations

Output

• Results for all allocators are merged

LargeBlockCollector.GetData(mergedData, mergedCount);

MediumBlockCollector.GetData(data, count);

LargeBlockCollector.Merge(mergedData, mergedCount, data, count);

for i := 0 to High(SmallBlockTypes) do begin

SmallBlockTypes[i].BlockCollector.GetData(data, count);

LargeBlockCollector.Merge(mergedData, mergedCount, data, count);

end;

• Top 10 “call sites” are written to
<programname>_MemoryManager_EventLog.txt

Findings

It is hard to release memory

• Time is mostly wasted in FreeMem

• GetMem (with small blocks) can “upgrade” to unused allocator
• One thread doesn’t block another

• FreeMem must work with the allocator that “produced” the memory
• One thread blocks another

Solution

Solution

• If allocator is locked, delay the FreeMem

• Memory block is pushed on a ‘to be released’ list

• Each allocator gets its own “release stack”

while LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) <> 0 do begin

{$ifdef UseReleaseStack}

LPReleaseStack := @LPSmallBlockType.ReleaseStack;

if (not LPReleaseStack^.IsFull) and LPReleaseStack^.Push(APointer) then begin

Result := 0;

Exit;

end;

{$endif}

• When allocator is successfully locked, all memory from its release stack is released.

FastMM4LockFreeStack

• Very fast lock-free stack implementation
• Taken from OmniThreadLibrary

• Windows only

• Dynamic memory
• Uses HeapAlloc for memory allocation

Problems

• Release stacks work, but not perfectly

1. FreeMem can still block if multiple threads are releasing similarly
sized memory blocks.
• Solution: Hash all threads into a pool of release stacks.

2. Somebody has to clean after terminated threads.
• Solution: Low-priority memory release thread.

• Currently only for medium/large blocks.

• CreateCleanupThread/DestroyCleanupThread

Bunch of release stacks

while LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) <> 0 do begin

{$ifdef UseReleaseStack}

LPReleaseStack := @LPSmallBlockType.ReleaseStack[GetStackSlot];

if (not LPReleaseStack^.IsFull) and LPReleaseStack^.Push(APointer) then

begin

Result := 0;

Exit;

end;

{$endif}

• GetStackSlot hashes thread ID into [0..NumStacksPerBlock-1] range

Danger, Will Robinson!

• Used in production
• Still, use with care

• Incompatible with FullDebugMode

• $DEFINE UseReleaseStack

NUMA
Non-Uniform Memory Access

Non-Uniformed Memory Access

SMP NUMA

Source: Introduction to Parallel Computing, https://computing.llnl.gov/tutorials/parallel_comp/

https://computing.llnl.gov/tutorials/parallel_comp/

NUMA brings problems

• Different “cost” for memory access

• Measurement from a real system
• 80 cores, 20 in each NUMA node

• Coreinfo, Mark Russinovich
• Not very accurate measurement

00 01 02 03

00 1.0 1.6 1.9 3.4

01 1.8 1.9 2.2 3.5

02 2.1 2.2 1.8 2.6

03 2.2 3.1 2.8 2.1

Solution

• Node-local memory allocation

• FastMM implementation: per-node allocators

• https://github.com/gabr42/FastMM4-MP/tree/numa

• VERY experimental!

https://github.com/gabr42/FastMM4-MP/tree/numa

Solution, part 2

• How to use more than 64 cores in your program?

• OmniThreadLibrary with NUMA extensions
• https://github.com/gabr42/OmniThreadLibrary/tree/numa

• Environment.ProcessorGroups, Environment.NUMANodes

• IOmniTaskControl.ProcessorGroup, IOmniTaskControl.NUMANode

• IOmniThreadPool.ProcessorGroups, IOmniThreadPool.NUMANodes

https://github.com/gabr42/OmniThreadLibrary/tree/numa

“NUMA” for Developers

• bcdedit /set groupsize 2
• https://msdn.microsoft.com/en-

us/library/windows/hardware/ff542298(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/hardware/ff542298(v=vs.85).aspx

Questions?

