
Paterns for pragmatists

Primož Gabrijelčič

PATERNS FOR PRAGMATISTS

@thedelphigeek

Primož Gabrijelčič
http://primoz.gabrijelcic.org

• programmer, MVP, writer, blogger, consultant, speaker

• Blog http://thedelphigeek.com

• Twitter @thedelphigeek

• Skype gabr42

• LinkedIn gabr42

• GitHub gabr42

• SO gabr

About me

Books

http://tiny.cc/

pg-dpd
http://tiny.cc/

pg-dhp
http://tiny.cc/

pg-ppotl

PATERNS FOR

PRAGMATISTS

• Merriam-Webster:
1. relating to matters of fact or practical affairs often to the exclusion of

intellectual or artistic matters : practical as opposed to idealistic
• pragmatic men of power have had no time or inclination to deal with … social morality

— K. B. Clark

• 2 : relating to or being in accordance with philosophical pragmatism

“Pragmatic”

• Pattern = template for a solution

• Pattern = common vocabulary

• Pattern ≠ recipe

• architectural patterns > design patterns > idioms

• design patterns ≠ design principles (SOLID, DRY …)

Design patterns

• “Classical” design patterns =
“Design Patterns: Elements of Reusable Object-Oriented Software”
• Very specific to object-oriented programming

• Somewhat specific to C++

• Better solutions exist for some of them

• Don’t use design patterns to architect the software
• Use them to solve specific problems

• Design patterns are a tool, not a goal!

Critique

• Object creation and destruction

• Assign and AssignTo

• [Attributes]

• Iterating with for..in

• Helpers

• Actions

• And more …

Delphi idioms

• Model-View-Controller, …

• Domain driven design

• Multilayered architecture

• Data warehouse

• …

Architectural patterns

• SOLID Single responsibility, Open-closed, Liskov substitution,
Interface segregation, Dependency inversion

• DRY Don’t repeat yourself

• KISS Keep it simple stupid

• YAGNI You ain’t gonna need it

• SoC Separation of concerns

• NIH/PFE Not invented here / Proudly found elsewhere

Design principles

• Creational patterns: delegation
• Creating objects and groups of objects

• Structural patterns: aggregation
• Define ways to compose objects

• Behavioral patterns: communication
• Define responsibilities between objects

• Concurrency patterns: cooperation
• Make multiple components work together

Design patterns: Categories

CREATIONAL

PATTERNS

• Abstract factory

• Builder

• Dependency injection

• Factory method

• Lazy initialization

• Multiton

• Object pool

• Prototype pattern

• Resource acquisition is
initialization (RAII)

• Singleton

Not covered in the book. Covered in more detail in this presentation.

A country should always have one and only one
president/queen/king/head of state/… at any time.
She or he is a singleton.

• Don’t use (true) singletons!
• They cause problems with unit testing

• They are not configurable

• Better approaches
• Global factory

• Global variable 

• Injection ☺

Singleton

Whenever I go somewhere with a car, I have to take into account
a small possibility that the car will not start.
If (and only if) that happens, I call my mechanic.
That is lazy initialization.

• Simple in a single-threaded program

• A bit trickier in a multi-threaded program

• Spring.Lazy<T>

Lazy initialization

if not assigned(lazyObject) then
lazyObject := TLazyObject.Create;

Use(lazyObject);

Imagine a kid making cookies out of dough. He can do nothing
until he invokes a factory method and says “Give me a cutter”.
You provide him with a cookie cutter and he can finally start
making cookies. In what shape? That’s your call.

• Factory method = TFunc

Factory pattern

Image source: https://sourcemaking.com/design_patterns/factory_method

STRUCTURAL

PATTERNS

• Adapter

• Bridge pattern

• Composite

• Decorator

• Extension object

• Facade

• Flyweight

• Front controller

• Marker

• Module

• Proxy

• Twin

Structural patterns

Not covered in the book. Covered in more detail in this seminar.

Marker is a label attached to a product. It is a note on a
car dashboard saying “Change oil at 150.000 km”,
or a message on a sandwich in a communal kitchen
stating “This belongs to me!”

• Attributes are in most cases a better solution

Marker interface

IImportantCustomer = interface ['{E32D6AE5-FB60-4414-B7BF-3E5BDFECDE64}']
end;

TImportantCustomer = class(TCustomer, IImportantCustomer)
end;

if Supports(customer, IImportantCustomer, ignored) then …

When you are accessing web from inside a business environment,
the traffic usually flows through a http filtering and caching proxy.
This software catches all http requests generated in browsers and
other applications and then decides whether it will forward
request to the target site, return the result from the cache,
or deny the request if the site is on the blocked list.

• Protection proxy

• Remoting proxy

• Lazy initialization proxy

Proxy

• Mocking proxy

• Logging proxy

• Locking/serialization proxy

BEHAVIORAL

PATTERNS

• Blackboard

• Chain of responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Null object

• Observer (Publish/Subscribe)

• Servant

• Specification

• State

• Strategy

• Template method

• Visitor

Behavioral patterns

Not covered in the book. Covered in more detail in this seminar.

Most modern operating systems know the concept of a null
device. or example, NUL on Windows and /dev/null on Unix and
similar systems are devices which are empty if we read from
them. They will also happily store any file you copy onto them,
no matter what the size. You'll never be able to retrieve that file,
though, as the null device stays empty no matter what you do
with it.

• Replace ‘if assigned’ code with ‘do-nothing’ objects/interfaces
• Null object ≠ nullable object

Null object

If you subscribe to a magazine, you don't go to the publisher
every day to check if new edition is ready. Rather, you wait until
the publisher sends you each issue.

• Also known as Publish-Subscribe

• Direct execution of the notification vs. messaging

• Optional granularity
• Usually indicates that the object is too complex (SRP!)

• Live Bindings: TComponent.Observers

• Spring4D: Multicast events
• Event<T>

Observer

CONCURRENCY

PATTERNS

• Active object

• Binding properties

• Blockchain pattern

• Compute kernel

• Double-checked locking

• Event-based asynchronous

• Future

• Guarded suspension

• Join

• Lock

• Lock striping

• Messaging

• Monitor object

• Optimistic locking

• Pipeline (Staged processing)

• Reactor

• Read-write lock

• Scheduler

• Thread pool

• Thread-specific storage

Concurrency patterns

Not covered in the book. Covered in more detail in this seminar.

When you are changing lanes in a car, you check the traffic
around you, then turn on indicators, check the traffic again, and
then change the lane.

• Faster access to code that is almost never used

• Shared object creation in a multi-threaded program
• Lazy initialization

• Spring4D / TLazy

Double-checked locking

In modern version control systems, such as SVN and git, you don’t
lock a file that you want to change. Rather, you modify the file,
commit a new version to the version control system, and hope
that nobody has modified the same lines of the same file in the
meantime.

• Even faster initialization of a shared object
• Provided that we don’t care if we create the object twice

• Spring4D / TLazyInitializer

Optimistic locking

If you play chess on the Internet, you are not sharing a chessboard
with your partner. Instead of that, each of you has its own copy of
the chessboard and figures and you synchronize the state
between the two copies by sending messages (representing the
piece moves) to each other.

• Windows messaging

• Queue and Synchronize

• Custom solutions
• Example: threaded queue + polling

Messaging

Q&A

